WESTCAS Fall Conference 24 October 2019 Tucson, Arizona

PFAS Overview Per- and Polyfluoroalkyl Substances

Overview: PFAS includes thousands of substances with <u>very different</u> properties

PFAS Overview

Fluorine
Carbon
Oxygen
Hydrogen

Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management 2011, 7, (4), 513-541. http://dx.doi.org/10.1002/ieam.258

History of PFAS - PFOS & PFOA

• Properties & Use

- Stable, hydrophobic (water) & lipophobic (oil and grease), superior surfactants
- Used as a stain/water repellant, surfactant in class B fire-fighting foams (AFFF), polymerization aid in fluoropolymer manufacturing
- Voluntarily phased out in U.S., Europe, and Japan by major manufacturers in conjunction with EPA
 - As a result, blood levels have dropped by 60 80%
 - Manufacturing continues in other countries and can be imported to the U.S.
- Issues
 - Persistent and bioaccumulative
 - Biological half-lives of 2-3 years
 - Associated with multiple health effects in animal testing
 - Including developmental effects
 - Mobile in water
- Federal Actions
 - Various use restrictions (*i.e.*, SNURs) imposed
 - Lifetime health advisories (@70 ppt) for drinking water issued in 2016

Blood Levels of PFOA and PFOS Have Declined Dramatically

NHANES – National Health and Nutrition Examination, Center for Disease Control and Prevention (CDC)

Exposure to PFOA and PFOS is Generally Low

- US EPA survey of public drinking water systems (2013-2015)
 - All large systems + representative sample of small systems
 - PFOA and PFOS were detected in less than 2 percent of the systems tested.
- MI Department of Energy, Great Lakes, and Environment (EGLE) 2018 Survey
 - All community, school, child care, and tribal water supplies
 - PFOA and PFOS not detected in 90 percent of the samples
 - An additional 7 percent of the samples <10 parts per trillion (ppt)
 - EGLE estimates that only 22 small water suppliers* would exceed the state's proposed standards for 7 PFAS out of a total of 2700 suppliers (<1%)

*suppliers include churches, trailer parks, schools, private businesses, and 2 small towns

What Other States Have Found

• VT PFAS Testing in Public Water Systems

- So far, all public drinking water systems sampled for PFAS shows that the water in each system currently meets state DW advisory level
 - The advisory level is 20 ppt for the sum of five PFAS
- Testing all public drinking water systems by December 1, 2019
- CA Public Water Supply Well Sampling
 - Testing for >600 water system sites adjacent to airports with fire training areas and municipal solid waste landfills
 - PFOS/PFOA detected at half of the sites, even though sampling was targeted at sites where contamination was expected

Potential PFOA/PFOS Exposure

- Disparity in guidance established by U.S. EPA, other federal agencies, various states, and international organizations has created significant confusion about the potential health risk of exposure to PFOA and PFOS
 - Values range from ~10 to 200+ ppt for PFOA; ~10 to 600 ppt for PFOS
- USEPA and MI DEQ surveys suggest that exposure to these two substances is generally below levels that have been identified as presenting potential health concerns

Regarding Water Standards for PFAS

- ACC supports a science-based rulemaking process for developing standards
 - Focused on PFOA and PFOS
 - Considers best available scientific information
 - Animal and human evidence for health effects
 - Latest information on biological half-lives
 - Standards should apply to individual substances
 - No single standard for multiple PFAS

Fluoropolymers

Material Properties:

Toxicity

Polymerization aids • Chemical resistance, thermal stability, resilience

 High molecular weight polymers that are not bioavailable and do not present a significant risk to human health or the environment

 Major manufacturers phased out use of PFOA/long-chains and moved to alternatives that regulators have approved with conditions (e.g., strict limits on emissions)

Fluoropolymers meet OECD Polymer of Low Concern Criteria

Example Fluoropolymer Applications

High frequency signal transmission; smudge-resistant touch screens

Textiles

Membranes in outdoor apparel, providing a breathable barrier against wind and rain

Medical Devices

High dielectric insulators in medical equipment that relies on high frequency signals

Aerospace/Auto

Weight reducing fuel lines; heat/chemical resistant wire coatings

Semiconductor Manufacturing

Providing pure environments to transport/store harsh chemicals

Alternative Energy

Insulation properties, durability, and safety enabling lithium batteries, fuel cells and photovoltaic solar panels

Fluorotelomer-based Products

 Surface modification & protection • Water & oil repellency **Properties** Provided Soil resistance and release • Wetting and spreading Major manufacturers moved to Chain short-chain fluorotelomer-based Length products

Example Fluorotelomer-based Product Applications

Healthcare

Garments/Drapes that Protect Against Disease Transmission

First Responder Gear

Treatments and Bulletproof Vests that Maintain Performance in Extreme Conditions

Oil/Grease Resistant Food Packaging that is Recyclable, Increases Shelf-Life, Reduces Packaging

Upholstery

Textiles with Water/Oil Repellency, Stain Resistance and Soil Release and Longer Useful Life

Paints and Varnishes

Durable construction materials coatings

Fire Fighting Foam

Class B (Flammable Liquid) Foams with Shorter Extinguishing Time and Burnback Resistance

About Short-Chain Fluorotelomer-based Products

- Accepted for use in consumer products by regulators globally
- Recognized as meeting relevant regulatory standards
- Polymers widely understood not to present toxicity concerns
 Not bioavailable; not a focus of regulators
- Hazard is characterized by their degradation products (namely PFHxA)
- Supported by a robust body of data
- Studies show short-chain fluorotelomer-based products do not present significant adverse impacts

PFHxA Toxicity Summary

- Does not represent a reproductive, developmental or neurobehavioral hazard
- Not carcinogenic
- Not mutagenic
- Does not bioaccumulate in fish
- Quickly eliminated from living organisms
- Not an endocrine disruptor

* PFHxA is an impurity/degradation product

Analytical Methods

- US EPA Method 537.1 (DW)
 - Measures 18 distinct analytes
 - Expanding to 25 analytes to cover certain short-chain PFAS
- Proposed US EPA Method 8327 (non-DW)
 - Draft released for public comment in June 2019
 - Intended to detect 24 PFAS analytes
 - Non-potable water (e.g. SW, GW, WW)

PFAAs can be removed from source water to meet drinking water standards

PFAS Removal from Water			
Technology	How it Works	Issues	End of Life
GAC - Granular Activated Carbon	Molecules adsorb onto surface	Pores not selective to	Spent GAC either
	of carbon particle pores	just PFAS; short-chains	landfilled or regenerated
	Least Expensive Option	not as effectively removed	via high temperatures
		via GAC	
IX - Ion-exchange Resins	Granular form can be packed in	Resins need to designed to	If single-use: landfilled
	beds like GAC. Charged particles	be specific to PFAS and thus	Can regenerate resins with
	bind charged PFAS molecules as	increase effectiveness	solvent flush. Flush needs
	they pass through bed	New resins are more efficient	to be managed/disposed of
RO - Reverse Osmosis	Contaminated water forced via	RO is energy intensive and	A concentrated liquid PFAS
Reverse Osmosis Process	pressure through semipermeable	may filter out other molecules	waste stream is generated
	membrane filtering out PFAS	such as minerals in drinking	and needs proper disposal
	selectviely	water. Potential pipe corrosion	
		control issue as a result	

Industry Best Practices -Reduces Environmental Release and Potential For Exposure

Links: https://fluorocouncil.com/PDFs/Guidance-for-Best-Environmental-Practices-BEP-for-the-Global-Apparel-Industry.pdf

Questions, Discussion