PFAS: The Treatment Toolbox

Corin Marron, PE

Overview

Physical & chemical properties

Treatment approaches:

- 1. What *doesn't* work
- 2. What we know *does* works
- 3. Case study
- 4. Innovative approaches

Unique Chemical Properties Drive Uses

Properties	Desirable	Less Desirable
Extreme Chemical Inertness	Fire Fighting	Difficult to Destroy
Hydrophobic <i>and</i> Lipophobic	Repels Stains & Prevents Wrinkles	Accumulates in Protein Tissues & Blood (not sequestered in fat)
Surface Active	Good Coating Material	Difficult to Measure / Sample Accurately

PFAS Treatment: Conventional Treatment Just Doesn't Cut It

Edited from Appleman et al, 2014. Water Research, 51, 246-255.

So....What Treatment Options Do We Have for PFAS?

Carbon Adsorption (GAC)

Ion Exchange (IX)

Reverse Osmosis (RO or NF)

Other Options: Are They Ready for Prime Time?

Process Selection Depends on Treatment Goals

Process	Effective for?	Capital Cost	Operation & Maintenance Cost	Residual?
GAC	Long-chained PFAS and some short-chained PFAS	Lower	Low-Med	Spent carbon / regeneration (\$)
AIX	Depends on resin	Lower	Low-Med	Spent resin / regeneration (\$)
NF / RO	All (RO) Most (NF)	High	Med-High	Liquid concentrate (\$\$\$)

Groundwater Case Study: GAC and IX

PFOS and PFOA Recently Detected in a Municipal Well Field

Initial Detections:

- PFOA ranged 5 200 ng/L
- PFOS ranged 6 50 ng/L

EPA Health Advisory: PFOA+PFOS < 70 ng/L

Carollo Developed a Plan to Remove PFOS and PFOA: Immediate and Long-term

Two Types of Bench Testing Are Typically Conducted for GAC Adsorption Evaluation

Туре	Apparatus	Outcome	Level of Effort
lsotherm (jar testing)		 Assess theoretical total capacity Compare different carbon or media relative to each other Cannot correlate with full-scale operation 	 Static and less sophisticated Fast and cost effective Easier to conduct 5+ gal sample Can perform in hours to days
RSSCT* (Column Testing)		 Correlates better with full scale operation Answers adsorption rates Instrumental for operation model calibration Can be used to estimate change-out frequency 	 Dynamic and more sophisticated Need special training More difficult to conduct 50+ gal sample Can perform in days to weeks

*RSSCT = Rapid Small Scale Column Test

Carbon Prep for Column Testing Considers Scale-up Hydraulic Conditions and Pore Structure

TACTIC Analysis = Total Adsorption Capacity with Temperature Influence Correction

Testing column

Column Testing: "Similar" Carbons Perform Very Differently!

Column Test Data Fed into Performance Projection Model

Performance Projection Model Predicts Change Out Frequency and Supports Cost Comparison, Design, and Future Operation

Full-scale Operating Data on Interim Treatment Units (to date) Match Model Predictions

Second Phase Testing for Long-term Treatment: Purolite IX Resin > 3.4 x More Effective than GAC

Purolite IX Also Cost 3.4 x More than GAC...

	GAC	lon Exchange	
Retrofit Capital Costs	No cost, per vendor's inputs		
Media Replacement Costs (\$/replacement)	\$33,000	\$111,080	
Cost Ratio	1:3.4		
Number of Bed Volume for Vessel 1 Breakthrough	45,000	155,000	
Breakthrough BV Ratio	1:3.4		

Additional Testing Was Recommended.

Case Study & Groundwater PFAS Treatment Take-homes:

1. "Conventional" treatment for PFAS trends toward adsorption

- GAC is a great interim option for "emergency response"
- Media (GAC or IX resin) selection for long-term treatment is site specific

2. Long-term economics can be evaluated through testing

- Rapid small-scale column tests (RSSCTs)
- Modeling to estimate O&M costs
- Confirmation through pilot testing (single well location, e.g.)

3. RO is typically not implemented for two reasons:

- Capital cost
- Concentrate disposal

PFAS Are Not Just a Groundwater Contamination Issue...

Innovation in "Conventional Treatment:" Dynamic Model Optimizes PFAS Removal by GAC and IX

Typical IX Breakthrough Curve

Typical GAC Breakthrough Curve

Growing PFAS Breakthrough Dataset Improves Model Accuracy

Coming Soon to Carollo: Collaboration with ASU Using Mobile NEWT Trailer

- Demonstration scale testing
- Continuous testing for IX, GAC, RO, and UV AOP*
- Fill in industry gap on
 - PFAS RSSCT Testing Accuracy
 - PFAS RSSCT using IX Resins

*UV AOP is for simultaneous treatment of other contaminants

Novel Adsorbents

DEXSORB[™] by Cyclopure

OSORB[®] by ABS Materials

- Effective for short (C3) and long (C8) chain PFAS
- Selective adsorbents (minimal competition with NOM)
- Can be regenerated

Commercially available in 2020

Thank you!

Corin Marron, PE cmarron@carollo.com 520-230-4714

