

TREATING BRACKISH WATER IN SANDOVAL COUNTY FEBRUARY 19, 2010

Project Background

 Sandoval County drilled two exploratory wells in 2007 in Rio Puerco Basin/SE portion of San Juan Basin

- Penetrated brackish water aquifer 3500 below ground surface.
- Brackish water under artesian pressure (over 150 psi) and 150 degrees Fahrenheit

 Well 6 production capacity approximately 600 gpm.

Project Purpose

 Sandoval County proposed to develop a wholesale water utility

- Provide water to the City of Rio Rancho (5 MGD)
- Provide water to sustain growth over next
 40 years in the area

No other sources of potable water in area

Water Chemistry

 Brackish water defined by concentration of total dissolved solids

Fresh water <1000 mg/L</p>

Brackish water : 1000-10,000 mg/L

Seawater: 30,000 mg/L

Sandoval County TDS: 12,000 mg/L

Water Chemistry

Constituents of Concern

- TDS -12,000 mg/L
- Hardness 1500 mg/L (100 mg/L acceptable for drinking water systems)
- Calcium- 450 mg/L
- High Alkalinity -1800 mg/L
- Bicarbonate- 1800 mg/L

Water Chemistry

- Arsenic 635 ppb (over sixty times MCL)
- Radium- 80 mg/L (sixteen times higher than MCL)
- Soron -9.7 mg/L (nearly twice as high as that found in seawater (5 mg/L)
- Carbon dioxide gas -1900 mg/L

Treatment Challenges

- CO₂ and H₂S
- Arsenic and radionuclides
- Hardness (calcium and magnesium)
- Alkalinity
- Boron
- High temperature

Treatment Processes

- Aeration to remove CO₂ and H₂S
- Coagulation/sedimentation to remove arsenic and radium
- Warm lime softening to reduce hardness and alkalinity
- Granular filtration to remove solids
- Ion exchange to remove remaining hardness
- Reverse osmosis to remove TDS and boron
- Cooling towers to reduce temperature

Treatment Goals

 Produce 5 MG of potable water meeting EPA Drinking Water Standards

- Reduce TDS to <500mg/L</p>
- Reduce arsenic to < 8 ppb</p>
- Reduce hardness to 100 mg/L
- Reduce radium to < 16 pCI/L</p>

Selective recovery of treatment by-products

Sodium chloride (NaCl)

Bench Scale Testing

- Conducted in June 2009
 - Determine pre-treatment processes
 - Focus on hardness, alkalinity, TDS, and removal of arsenic and radium
 - Determine dosages of pre-treatment chemicals
 - Estimate chemical usage and volume of treatment system waste products

Pre-Treatment Process Train

Pilot Testing

 Conducted September – November 2009

- Evaluated pre-treatment processes and RO system
- Generate water quality projections for product and waste streams
- Establish design criteria and operating conditions for full-scale plant

Pilot Testing Parameters

 Caustic soda used in softening process instead of lime

- Coagulation and softening occur in same contact clarifier
- WAC ion exchange to remove remaining hardness and divalent ions

 High Efficiency Reverse Osmosis process using both brackish water and seawater membranes (4 stage process)

80% recovery target for RO process

Pilot Testing Process Flow Diagram

Pilot Testing Trailer and Equipment

Pilot Testing Trailer and Equipment

Pilot Testing – RO Process

Pilot Testing – Clarifier/Softening Process

Pilot Testing – Clarifier/Softening Process

Pilot Testing – Holding Pond

Pilot Test Results – Pretreatment Processes

Pretreatment processes successful

- Hydrogen sulfide and CO₂ reduced in aeration
- Arsenic and radionuclide reduced in coagulation/sedimentation
- Significant hardness removal in warm lime softening process
- Effective radionuclide removal in softening and granular filtration processes
- Ion exchange effective in reducing remaining hardness

Pilot Test Results – RO Process

- RO Process Successful
 - Achieved 80 percent recovery
 - TDS reduced to < 200 mg/L</p>
 - Soron removal from 9.7 mg/L to 3 mg/L
 - Concentrate contained primarily sodium chlorides and sodium sulfates
 - Permeate requires stabilization to reduce corrosiveness of water
 - Cooling required before introduction into system

Conclusions

- Brackish water supply can be treated to meet EPA Drinking Water Standards
- Significant pre-treatment required before RO process
- Significant challenges with disposal of waste products
- Possibility of beneficial recovery of byproducts, namely sodium chloride

Conclusions

Estimated construction cost of full scale
 5 MGD plant -\$62.4 million

- Estimated annual O&M \$15.2 million (\$6.75/100 gallons)
- Funding challenges

Questions and Comments

