Experience with Fire- and Weather-Induced Changes in Water Quality

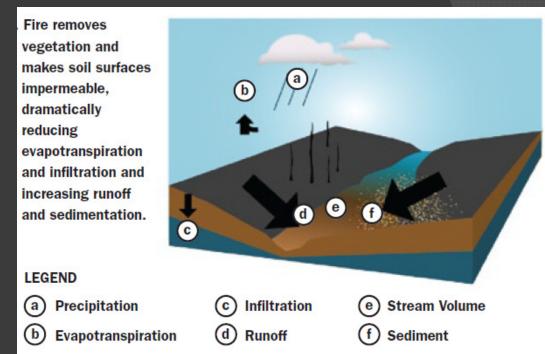
WESTCAS 2011 Fall Conference

Chad Seidel, Ph.D., P.E. Jeanne M. Jensen, P.E.

Jacobs Engineering Group, Inc.

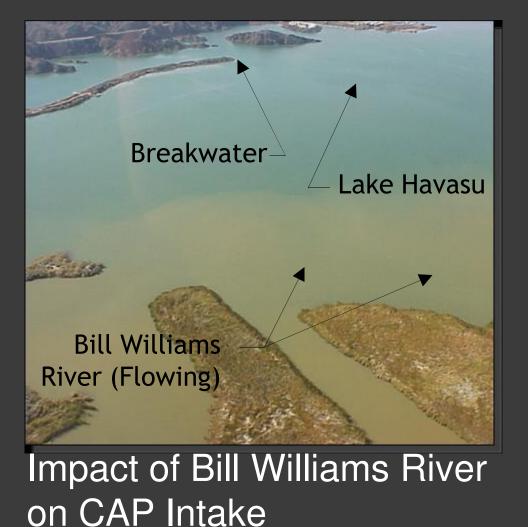
Presentation Objectives

- Potential Water Quality Changing Events
- Remembering Rodeo-Chediski
 Immediate Water Quality Impacts
 - Phoenix Metro-Area Utilities' Response
- Broader View of Climate Change Issues
- Utility Response Options


Potential Water Quality Changing Events

- Wildfire
- Heavy runoff events
- Prolonged drought
- Floods and extreme storm events
- Extreme temperature events

Wildfire


- Arid states vulnerable to wildfire events
- Changes characteristics of watershed
 - Absorbance of water
- Immediate impacts, as well as long term changes to the watershed
 - Ash runoff
 - Decreased vegetative productivity
- Fire suppression chemicals
- Changes in vegetation types
 - Evergreen to deciduous
 - Repopulation with grasses

OURCE: STRANGE, E.M.; LANE, D.R.; AND HERRICK, C.N. UTILITY GUIDANCE FOR MITIGATING CATASTROPHIC VEGETATION CHANGE WATERSHEDS. ©2009 WATER RESEARCH FOUNDATION. REPRINTED WITH PERMISSION.

JACOBS

Heavy runoff events

- Flash flooding can result in significant soil runoff
- Agricultural runoff
- Erosion of soils and plant material
- Increased turbidity
- Change in character of TOC
- Addition of debris

JACOBS

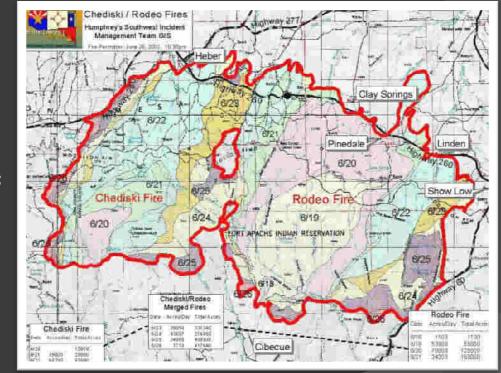
Prolonged drought

Right: Bathtub ring at Lake Mead Photo courtesy of Neil McIntosh completetosh.com

Increased variability of rainfall Short, intense events Storage volume reduction Increased agricultural demand

Example Water Quality Impacts

		Water quality impact (source water or finished water)								
Weather event	Algae	Alkalinity	Inorgan	nics Org	anics	pН	Salinity	Tem	perature	Turbidity
Extreme runoff	Х	Х	Х		Х	Х	Х			Х
Prolonged drought			Х		Х	Х	Х		Х	Х
Storms			Х		Х		Х			Х
Temperature	Х				Х		Х		Х	
				Degree of impact on water treatment process						
Water quality variable	Rele	vant extreme eve	ents (Coagulation	Settling	Filtra	tion Disini	ection	Distribution finished wate	
Algae	Extreme heat	t, nutrient rich run	off	++	++	+	+	++	+	
Alkalinity	Runoff event	s		+++		-		+	+++	-
Inorganics	Runoff event	s, drought		++	+	7	-	+	+	1.5
Natural organic matter (NOM)	Runoff event	ts, drought		++	-	2	+	++	++	-
Organic contaminants (natural and anthropogenic	Runoff event	ts, drought		2	+	+	+-	++	+++	_
pH	Runoff event	s		++	121	2	14	+	+++	-
Salinity		s, drought, storms associated with ro		-	+	+	1	-	+	+
Temperature	Storms, temp	erature events		-	+	+		+	+++	+
Turbidity	Runoff event	ts, drought		+++	+++	++-	+ +	+	++	+++
Notes: "-" = minimal or no impact "+" = potential impact.										


"++" = moderate impact.

"+++" = significant impact.

Source: Information in this table modified from "Water Quality and Treatment" (Letterman, 2010).

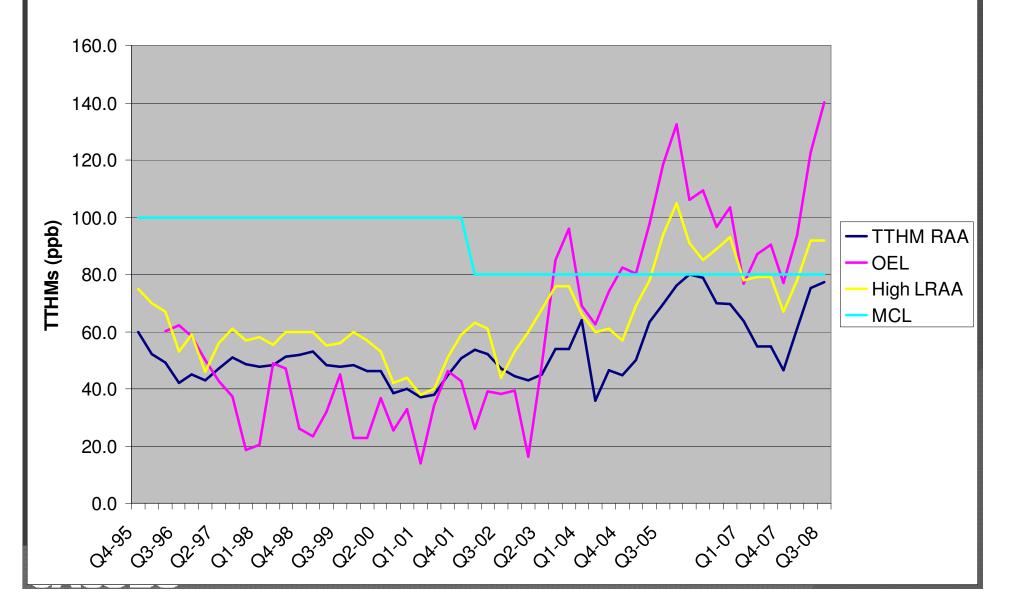
Remembering Rodeo-Chediski

- June-July 2002
- Nearly 500,000 acres burned
- Located on Salt River Watershed
 - Approximately 8% of watershed burned
- Orought conditions
 - Ongoing conditions
- Reservoir levels near historic lows

Immediate Water Quality Impacts

		Minimum	Maximum	Average	
		Concentration	Concentration	Concentration	
Constituent	Time Period	(mg/L)	(mg/L)	(mg/L)	
Ammonia	Pre-fire	0.01 (MRL)	0.06	0.02	
	Post-fire	0.004	1.09	0.18	
Total Nitrogen	Pre-fire	0.02	3.8	0.74	
	Post-fire	0.84	220	52.8	
Nitrate+Nitrite	Pre-fire	0.01 (MRL)	0.62	0.081	
	Post-fire	0.013	2	0.42	
Dissolved Organic	Pre-fire	0.9	4.9	2.16	
Carbon	Post-fire	0.703	56.6	7.66	
Total Organic	Pre-fire	0.9	33	5.42	
Carbon	Post-fire	4.8	1140	228	
Dissolved	Pre-fire	0.01 (MRL)	0.08	0.019	
Phosphorus	Post-fire	0.0035	0.57	0.12	
Total Phosphorus	Pre-fire	0.01 (MRL)	4	0.12	
	Post-fire	0.006	39	3.89	
Suspended	Pre-fire	1	11700	293	
Sediment	Post-fire	1.6	42500	4050	

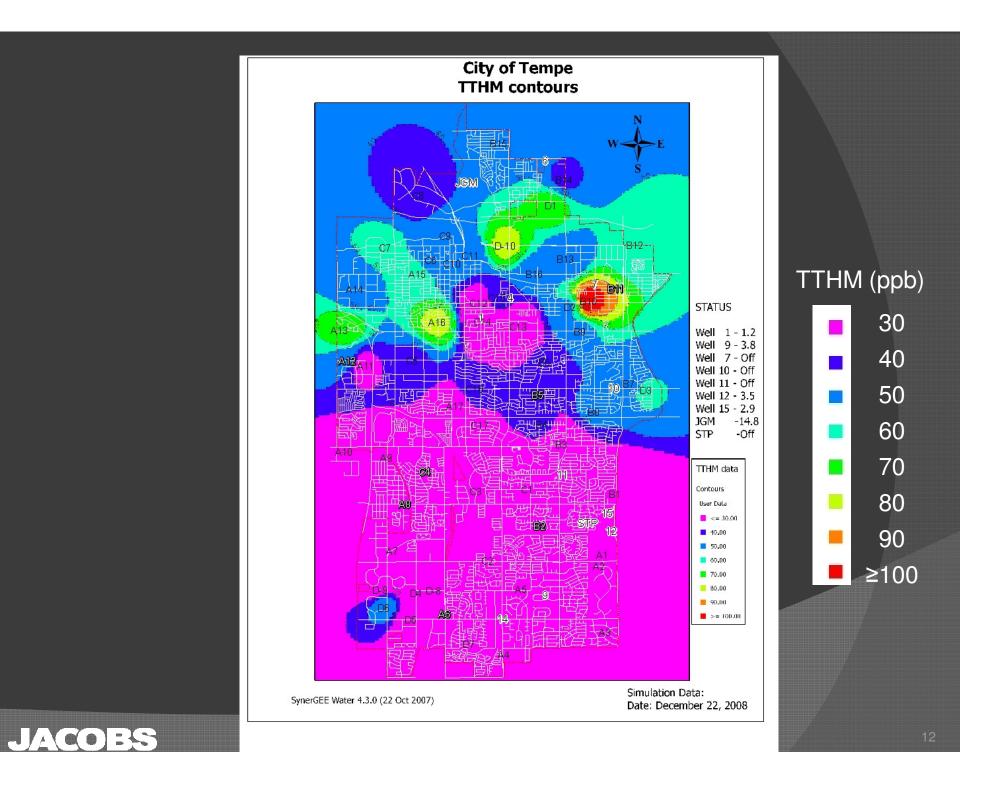
Pre-Fire: 1980-2002

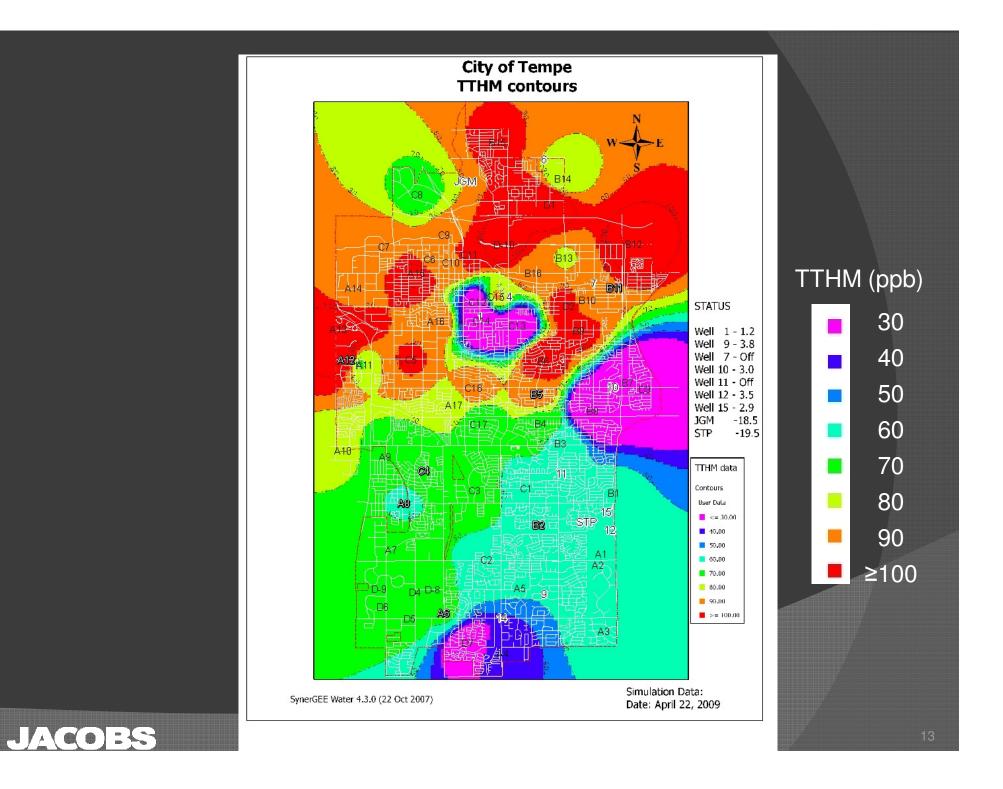

Post-Fire: 2002-2005

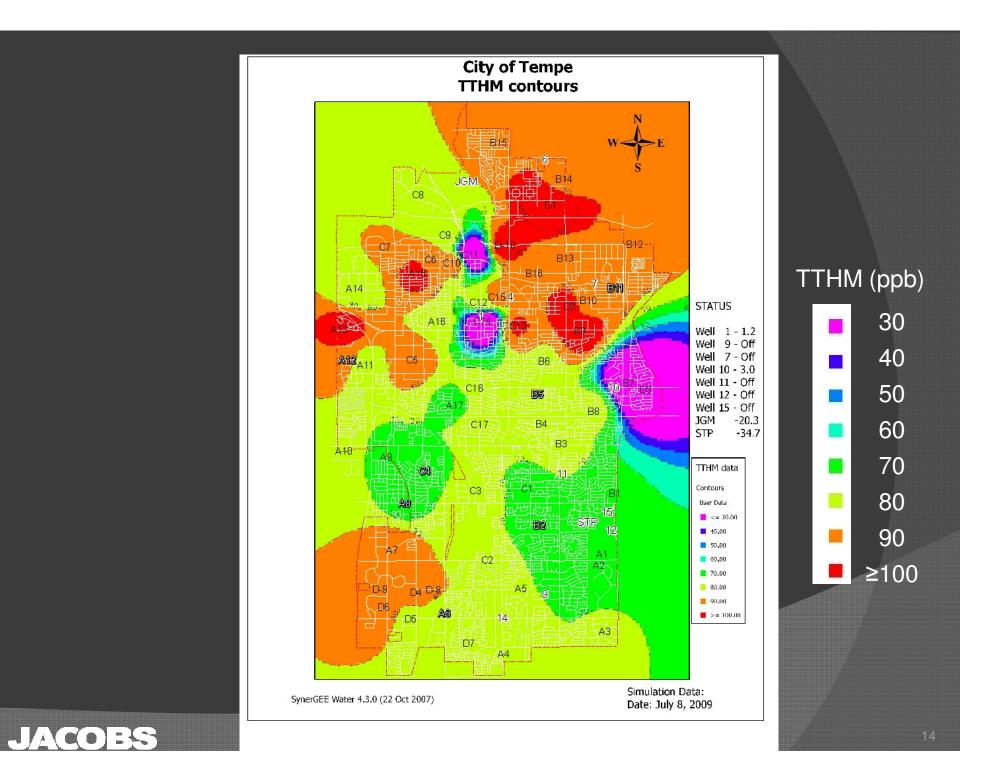
Source: THE IMPACTS OF FOREST FIRES ON DRINKING WATER QUALITY, Darla Deane Gill, ASU

JACOBS

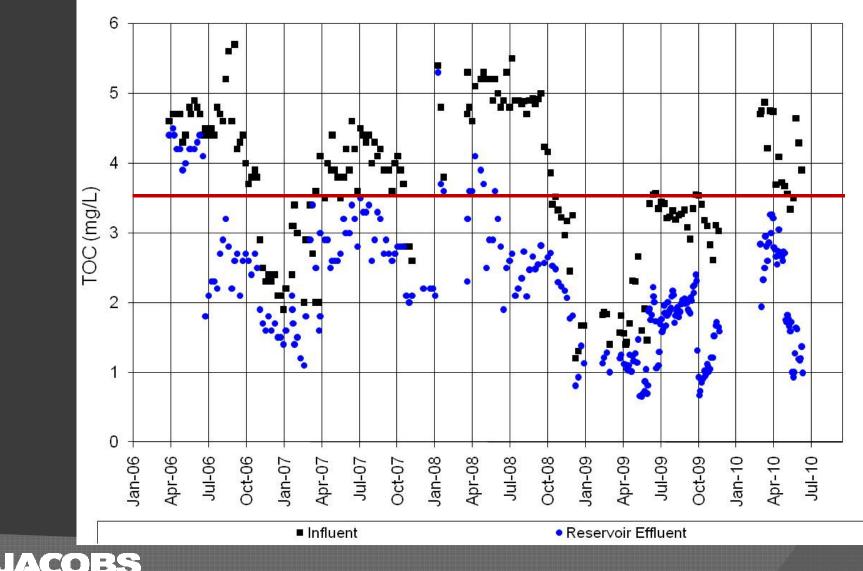
City of Tempe, AZ DBP History


TEMPE TTHMs 1995 - 2008

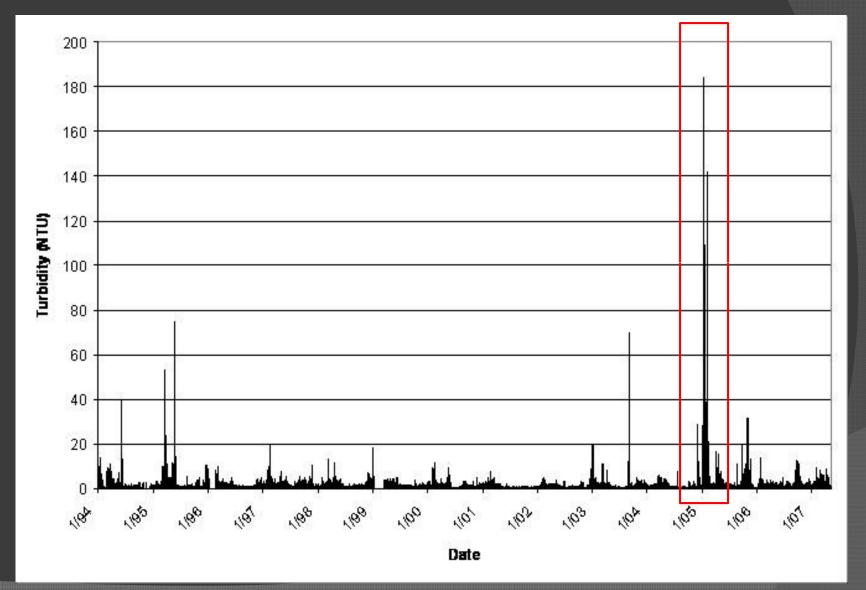



City of Tempe Efforts

- Understand whether the current operations can comply with the Stage 2 DDBP Rule
- Identify the factors (WQ and operational changes) that influence DBP formation
- Evaluate potential solutions
- Use ongoing surveillance and reactive "tweaks" to contribute potentially significant returns
- WTP Improvements:
 - Coagulation with optimized coagulant and PAC dose
 - Blending with GW

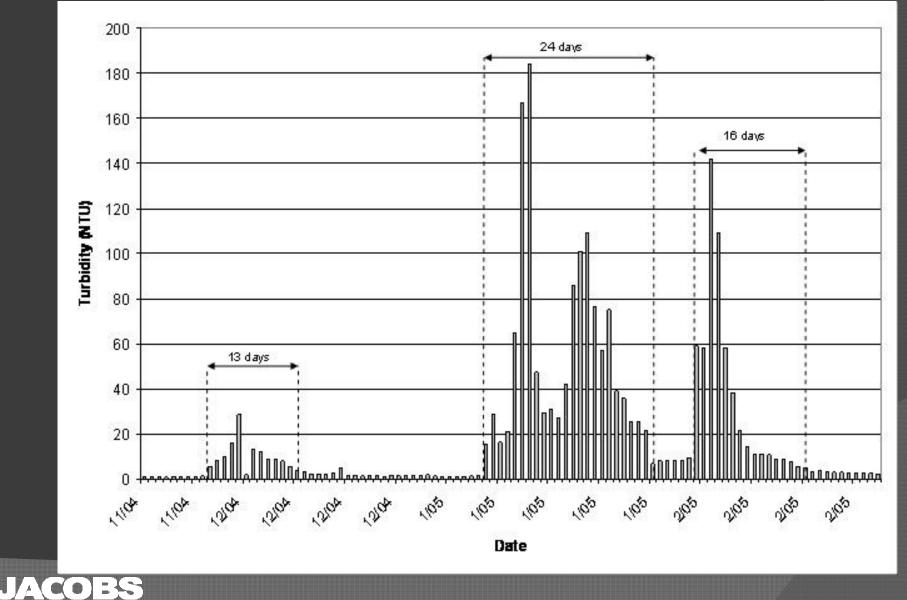


Scottsdale Chaparral WTP TOC History


15

Scottsdale Chaparral WTP Response

- In Plant originally designed for 3.5 mg/L TOC
 - Observed TOC range 3-5 mg/L
- Novel treatment approaches
 - Coagulant change
 - Intermediate chlorination ahead of GAC
 - GAC optimization
 - TTHM aeration in clearwell



City of Phoenix UHWTP Turbidity

JACOBS

City of Phoenix UHWTP Turbidity

18

City of Phoenix UHWTP Response

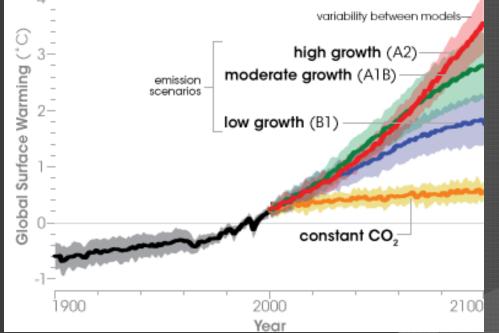
Optimization of key facilities

- High Turbidity Events
 - Turbidity Event Operating Strategy Guide
- Changing Water Quality
- Reduce plant capacity, short-term
- Targeted treatment of resultant TTHMs
 - Applied aeration

Summary of Phoenix Metro-Area Utilities' Response

- Fluctuating source water quality throughout the area
- Developed Early Warning System
 - In-stream monitoring
 - Upstream facilities alerting downstream facilities
- Focused on system optimization
 - Use what you have
- Managed impacts of increased TOC/DOC
 - WTP optimization
 - Enhanced coagulation
 - Preoxidation
 - GAC/PAC

- DS optimization
 - Aeration
 - Flushing


Broader View of Climate Change Impacts

- WaterRF 4239, Climate Change Impacts on the Regulatory Landscape
- Objective: Study impact of climate change on the water community and related regulation
 - 1. Identify regulatory issues, international options and technical constraints
 - 2. Apply findings to our utility partners and test them through case studies
 - 3. Validate the case study findings through a peer review workshop

Climate Change: An Overview

- Average surface temperature is likely to increase by 2 to 11.5 °F by the end of the 21st century, relative to 1980 – 1990, with a best estimate of 3.2 to 7.2 °F
- Warming will differ by season, with winters warming more than summers in most areas

Source: USPEA, http://www.epa.gov/climatechange/science/futuretc.html

Potential Impact on Western States

- Likely reduction in snowpack and seasonal shifts in runoff patterns
- Possible declines in groundwater recharge reduced water supplies
- Increased water temperatures
 - Increased chlorine residual decay, DBP formation, and other WQ concerns
- Increased frequency of intense environmental events
 - Flash floods
 - Wildfire
- Possible salinity increase in San Francisco bay and Sacramento/San Joaquin Delta

Case Study Highlights

Golden, CO

- Conservation strategies
- Separating irrigation flows
- Optimized operation during turbidity events
- East Bay Municipal Utility District, CA
 - Potential for high turbidity due to wildfire would be difficult to manage and costly
 - Need to address in future planning
 - Conservation strategies

Case Study Highlights

Scottsdale, AZ

- Diversified water supply
 - Surface water
 - Groundwater
 - Reclaimed water
- Conservation strategies

Utility Response Options

O nothing

- Risk water quality impacts to drinking water
- Optimize existing facilities
 - Jar testing, chemical utilization
- Suild new facilities
 - Systems that are more robust, less impacted by shifts in source waters
- Manage downstream
 - Distribution system improvements
- Reduce consumption
 - Implement conservation strategies

Acknowledgements

 We would like to thank our teaming partners for their important contributions to this work!

- Phoenix, AZ
- Tempe, AZ
- Scottsdale, AZ
- Golden, CO
- East Bay Municipal Utilities District
- Arizona State University
- USGS
- Water Research Foundation

Questions

Chad Seidel, Ph.D., P.E.
 Phone: (303) 820-4846
 Chad.Seidel@Jacobs.com

Jeanne M. Jensen, P.E.
 Phone: (602) 530-1664
 Jeanne.Jensen@Jacobs.com

