

Troy Hayes, P.E.
City of Phoenix
Water Services
Deputy Director
(Water Quality)

City of Phoenix

October 28, 2011

Story Table of Contents

- Background
- The Plan
- The Plan Update
- The Event
- Question the Plan
- The New Plan
- The New Old Plan

Steps for the Future

City of Phoenix Background

- Six Surface Water Treatment Plants
 - Two water sources
 - 100 Billion Gallons per year
- 540 Square Miles of Service Area
 - 400,000 Accounts
 - 7,000 miles of distribution mains
- System Conditions
 - Periods of elevated TOC Levels
 - Higher Temperature
 - 77 Major Pressure Zones
 - Water Age (5+ days)
 - Chlorine Residual

Historical Total Organic Carbon in Source Waters (up to 2001)

Chapter 1 - The Plan (1989)

Water Quality Master Plan EXECUTIVE SUMMARY

Water and Wastewater Department City of Phoenix, Arizona

September 1989

First Water Quality Master Planning Effort

Purpose of 1989 Water Quality Master Plan

- Identify water quality improvement options for City's potable water delivery
 - Consider changing/uncertain regulatory environment
 - Provide healthful and best quality water to customers
 - Robust multiple barriers for multitude of contaminants
- Recommend long-term strategies for treatment process upgrades
- Identify key decision points

Highlights of 1989 Water Quality Master Planning Approach

- Seek advice of leading water industry experts to gage regulatory direction and best approach for compliance
- Conduct extensive bench and pilot-scale evaluation of potential treatment strategies
- Analyze treatment options for feasibility and cost
- Develop a road map with identified decision points
- Recommend short-term and long-term CIP strategies

Roadmap from 1989 Plan

1989 WQMP Recommendations

- Maintain chlorine usage
 - Primary and Secondary
- Reduce dissolved organics within existing design
 - Enhanced Coagulation
- Optimize distribution system to reduce water age

1989 WQMP Recommendations cont.

"At such time removal of TOC is required beyond capability of the plants, as designed, a choice will need to be made."

Options to be evaluated in future

- Enhanced TOC removal through GAC
- Change from free chlorine to chloramines

Chapter 2 - The Plan Update (2006)

New Regulatory Drivers for Water Quality Planning

Stage 2 DBP Rule

- Aimed at reducing customer exposures to harmful disinfection by products (Trihalomethanes and Haloacetic Acids)
 - DBPs have been regulated since 1979
 - New Rule does not allow averaging over the entire system
 - Compliance is required beginning 2nd Q 2012
- City of Phoenix challenges for compliance with this rule include:
 - Elevated water temperatures
- Long water age

Purpose of 2006 Water Quality Master Plan Update

- Re-assess water quality goals and underlying philosophy of potable water treatment
 - Consider water quality parity
 - Consider improvements in treatment technology
 - Incorporate new information about disinfection, DBPs, and other contaminants
- Recommend treatment process upgrades needed for the known and emerging regulations

Highlights of 2006 Water Quality Master Planning Approach

- Stakeholder input from various City divisions to develop a consensus about potential strategies
- Examine chloramination
- Perform scenario planning to address future uncertainties
- Conduct extensive pilot-scale
 - GAC
 - Chloramination, and Ozonation

Historic TOC Values

CAP water data compiled from Union Hills WTP and Pyramid Peak WTP (Glendale) raw water data SRP water data compiled from 24th Street WTP and Cholla WTP (Glendale) raw water data

Results of Alternatives Evaluation

Recommendations from 2006 Water Quality Master Plan

- Implement GAC Filter Adsorbers at all WTPs based on:
 - Additional cost of GAC is still within the comfort zone in light of the fact that the risks of exposure to contaminants is greatly minimized with GAC treatment
- Chlorine dioxide is recommended
 - Preoxidant to precipitate iron and manganese
 - Allows for the elimination of prechlorination

Chapter 3 - The Event

Changes in Source Water Quality

CAP water data compiled from Union Hills WTP and Pyramid Peak WTP (Glendale) raw water data SRP water data compiled from 24th Street WTP and Cholla WTP (Glendale) raw water data

Chapter 4 -Question the Plan (Take a Trip)

Initiation of GAC Roadmap

- WQMP Updates
- GAC Roadmap

Primary Reasons for Concerns about the recommended approach

Prolonged period of elevated TOC would require frequent replacement of GAC resulting in:

27

- Operational hardship
- Financial hardship

What Changed?

- Re-evaluation of Water Quality Philosophy
 - DBP Rule Compliance (Primary Focus) While Maintaining Flexibility to Implement Long-Term Water Quality Goals
 - Allow 90% TTHM MCL
 - Allow for WTP Specific TOC Targets
 - Allow for Seasonal TOC Targets
 - 1st and 4th Quarter 56 ug/L TTHM
 - 2nd and 3rd Quarter 88 ug/L TTHM
 - Reduce life cycle costs of GAC Program

GAC Road Map Project Considered Alternatives (Lower Life cycle costs)

7-Yr Cycle GAC O&M Costs plus CIO2 + FeCI2 O&M Costs

GAC Road Map Results

- Continue with GAC Program
 - GAC Filter Adsorbers
 - VV WTP and DV WTP
 - Filter Contactors
 - 24th Street WTP
 - Biologically Active GAC Filters
 - UH WTP
- Chlorine Dioxide
 - Pre-Oxidant at 1 ppm max
- Optimize Enhanced Coagulation

Chapter 5 - The New Plan – High Rate Chlorine Dioxide

Water Quality Master Plan Update Amendment Project Number WS####

Water Quality Strategy

for Compliance with Disinfection By-Product Regulation

Revised Water Quality Strategy

City of Phoenix

- WQMP Updates
- GAC Roadmap
- WQ Strategy

D4-D5

Key Factors Considered

- Operational Flexibility
 - Multiple tools
 - Technologies can be switched "on/off"
 - Opportunities for operational cost savings
- Maximize Future Options
 - Adaptability to future regulatory changes
- Life Cycle Cost
 - Total costs of the compliance strategy

Chlorine Dioxide RSSCTs - SDS DBP Testing

TOC target increases when ClO₂ is applied:

1.60 mg/L for Baseline EC
2.40 mg/L for ClO₂ pre-treatment

Compliance Strategy

- Initial Strategy
 - Granular Activated
 Carbon (GAC) Filters

 Removes THM precursors
- Revised Strategy
 - GAC Filters Removes THM precursors
 - High Rate Chlorine Dioxide Reduces formation of THMs
 - Distribution System
 Optimization

 Reduces water age

Various combinations of these tools resulted in 11 alternative operating scenarios that are evaluated in detail

Features of Selected Alternative

- Post-Filter Contactors at Val Vista
- Filter Adsorbers at Deer Valley
- 3 ppm Chlorine Dioxide at all WTPs
- Distribution system optimization

Cost Comparison

Original Program

- Capital Cost = \$243M
- O&M Cost = \$31M/Yr to \$46M/Yr

Revised Strategy

- Capital Cost = \$238M
- O&M Cost = \$25M/Yr to \$34M/Yr

Unintended Consequences- Customer Concerns

- Rusty Water
- Milky/Dirty
- Bad Taste/Odor

Unintended Consequences- Customer Concerns

- Rusty Water
- Milky/Dirty
- Bad Taste/Odor

Unintended Consequences- Customer Concerns

- Rusty Water
- Milky/Dirty
- Bad Taste/Odor

Accounting for TOC and Temp, Salt River TTHM Formation Decreased by 16-35%

No Reduction in TTHM formation was Observed for Verde River Water

Chapter 6 - The New Old Plan (Oct. 2010)

- Stop Design and Construction of 3 mg/l Chlorine Dioxide
- Implement GAC at all WTPs and 1 mg/l Chlorine Dioxide
 - Val Vista WTP GAC Contactors
 - Deer Valley WTP GAC Filter Adsorbers
 - Union Hills and 24th Street WTPs Biological GAC Filters
 - Previously designed filter adsorber plans modified

Distribution System Optimization

An Optimized Plan

- Distribution System AerationTreatment
- Reduced Water Age

of Phoenix

- Piping and Reservoir Reconfiguration
- Optimization of Reservoirs on WTPsSites
 - pH Control thru CT Reservoirs

D7

Steps for the Future

- Continue to optimize system
 - Addition of system Aeration treatment
 - System piping modifications

Regional GAC Regeneration

- System GAC Treatment
- Water Quality Monitoring

The Moral of the Story – Our plan included a robust treatment system that allowed for flexibility. We believe that we can handle future Water Quality challenges.

Questions

