Chromium 6 Treatment Options

Presentation at WESTCAS
October 30, 2013

Nicole Blute, PhD, PE Hazen and Sawyer

Agenda

- Introduction
- Regulatory Update
- Leading Technologies
- Key Technology Selection Drivers
- Conclusions

What is Chromium 6 and why is it a new regulatory concern?

- Chromium Cr3 and Cr6 is a naturally occurring element found in rock, soil, and groundwater.
- Cr3 is an essential human nutrient that is included as an element in food supplements.
- Cr6 can also occur as an industrial byproduct in manufacturing processes.
- These industrial byproducts were discharged to the ground, in rivers, etc. and eventually reached groundwater supplies.

Cr3 may be converted to Cr6 if not removed

Days after Chloramine addition

What is the new draft California MCL for Cr6?

- Cr6 concentration of 10 ppb
- Regulated at points of entry
- Quarterly running annual average
- Best available technologies include:
 - Ion exchange
 - Coagulation/filtration (with reduction upstream)
 - Reverse osmosis
- CDPH can require chromium speciation study if monitoring results exceed 10 ppb and disinfection is used

Will USEPA set a Cr6 MCL?

- UCMR3 2013-2015
 - Assessment Monitoring List includes Cr6 and Total Cr
 - Low detection limits
 - Entry point and maximum detention time location
 - Ground water monitor twice in a 1 year period
 - Surface water monitor quarterly in a 1 year period
- IRIS Toxicological Review underway

What are important lessons learned from implementation of the Arsenic Rule?

 Careful selection of technologies is important, because some of the best available technologies may not work effectively in every water quality

- Residuals disposal was the tail that wagged the dog
- Costs were underestimated
- Many small communities are still out of compliance

What are the options for achieving Cr6 MCL compliance?

- Non-treatment
 - Blending
 - Use of other sources
- Treatment

Treatment technologies

Four treatment strategies emerged as leading options

– All can achieve the draft MCL of 10 ppb

Weak-Base Anion Exchange

Strong-Base
Anion
Exchange
with
Residuals
Treatment

Reduction/ Coagulation /Filtration

Reverse Osmosis

Operational experience with WBA and RCF at Glendale, California

- Glendale chose to design and construct WBA and RCF removal facilities to treat their groundwater
- SBA not selected due to concerns about long-term brine disposal

Operational experience with SBA at Coachella Valley Water District

- CVWD is operating three SBA facilities (up to 4,000 gpm) for arsenic removal, and also observing removal of Cr(VI) to less than 1 ppb
- Brine treatment and disposal is cost driver

Weak Base Anion Exchange (WBA) treatment process

- Cr6 exchange and conversion to Cr3
- Requires pre- and post-treatment for pH control

City of Glendale, California

WBA unit processes

Strong Base Anion Exchange (SBA) treatment process

- Exchange of Cr(VI) anions for less strongly held chloride ions on resin beads
- Requires periodic regeneration with salt solution (brine) and disposal and/or treatment of Cr(VI)-laden brine

Coachella Valley Water District

SBA unit processes

SBA brine treatment

SBA brine treatment

Reduction/Coagulation/Filtration (RCF) treatment process

- Use of ferrous iron to reduce Cr6 to Cr3
- Removal of particlebound Cr3

City of Glendale, California

Reduction/Coagulation/Filtration (RCF) treatment process

Reduction

Coagulation

Filtration

RCF unit processes

RCF – with granular media filtration

RCF – with microfiltration

Microfiltration:

Submerged and Pressure

Reverse Osmosis (RO) treatment process

- Use of high pressures to exclude chromium molecules through size and charge exclusion
- Requires pretreatment chemical dosing to avoid scaling
- Will require downstream blending or mineral addition to avoid distribution and service pipe corrosion

RO unit processes

Key deciding factors in technology selection

Water Quality

Residuals Disposal

Operational
Preferences and
Flexibility

Cost Considerations

Impacts of water quality of technology selection

 High alkalinity increases CO₂ or acid doses needed for pH reduction on WBA resin

Sulfate

 High sulfate increases brine generation rate for SBA resin

TOC

 High TOC can impact RCF coagulation, requiring smaller particle size removal

Uranium

 One WBA resin effectively accumulates uranium

Residuals for each technology

WBA

Minimal backwash water

Spent resin

SBA

Brine

Precipitated Cr from brine

RCF

Backwash water (3-5%)

BW water solids if settled

RO

Concentrate (15-25%)

None

Operational preferences and flexibility

- Time
- Systems complexity
- Operator level

Capital costs – An example

Three sets of cost estimates used to develop this specific example.

Treatment process assumptions:

- SBA On-site regeneration with brine
- RCF 45 minute reduction time and aeration (for bars)
- RCMF 15 minute reduction time and chlorination
- WBA pH adjustment with CO₂ and air stripping

Residuals management assumptions:

- SBA clarified waste brine hauled off-site
- RCF backwash water treated and recycled
- RCMF backwash water discharged to sewer

O&M costs – An example

Assumptions:

- Assumes water quality of approximately 20 mg/L sulfate and 165 mg/L alkalinity
- Assumes 100% utilization for O&M costs

Annualized costs – An example

Assumptions:

- 20 year equipment life
- 5% interest rate

Summary

- New draft Cr(VI) MCL in California of 10 ppb
- Research identified several possible technologies for Cr(VI) removal to achieve this MCL
 - Ion Exchange (weak- and strong-base)
 - Reduction/Coagulation/Filtration
 - Reverse Osmosis
- Key drivers for technology selection are water quality, residuals disposal options, operational preferences, and cost

Reference Materials

City of Glendale Final Report (February 28, 2013)

Available on City website

Water Research Foundation sponsored study – *Guidelines for Hexavalent Chromium Treatment Studies, #4418*

Available on WaterRF website

Questions?

 Nicole Blute nblute@hazenandsawyer.com 310-266-6212

