Proposed California Chromium-6 Drinking Water Regulation Coachella Valley Impact

> WESTCAS 2013 Fall Conference Regulatory Session October 30, 2013

Chromium Regulation Timeline

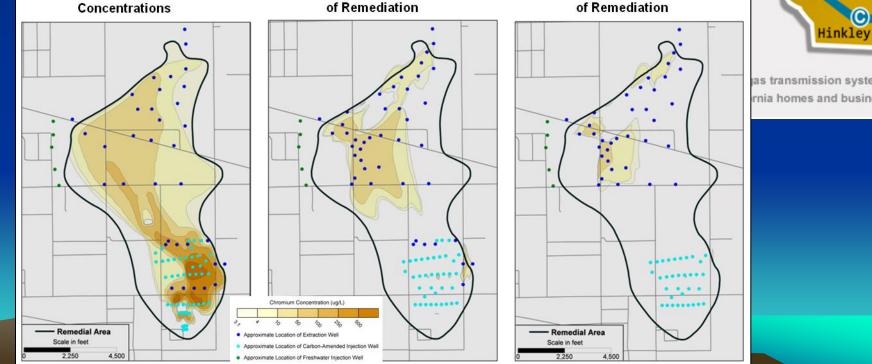
- 1977: Existing total chromium limits
 - ✓ National (EPA) = 100 ppb
 - ✓ State (CA) = 50 ppb
- 1999: State raises Cr-6 ingestion concern
- 2000: Erin Brockovich movie increases interest
- 2001: Law requires chromium-6 limit by 2004
- 2008: Rodent study completed to calculate risk
- 2009: Draft Public Health Goal (PHG) released
- 2011: State sets PHG (0.02 ppb)
- 2012: NRDC & EWG sue State
- 2013: State proposes draft Cr-6 limit (10 ppb)
- 2013: EPA working on Cr-6 risk assessment

EWG.ORG

PG&E – Hinkley, CA

- Cooling tower blow-down (1950's-60's)
- Contaminated groundwater with Cr-6
- PG&E settlement \$400 M plus

Initial Chromium

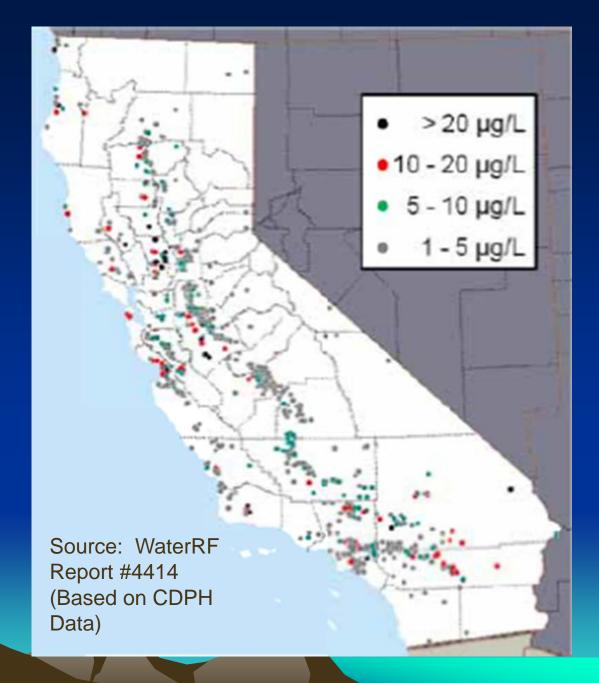

California Cancer Registry (three Hinkley studies)

After 10 Years

No increased cancer rate found

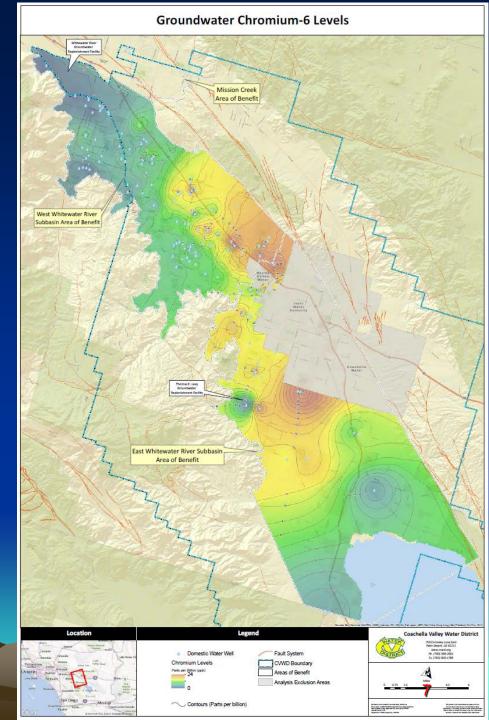
3

U.S. Total Chromium Occurrence



Source: WaterRF Report #4414 (Based on USEPA Data)

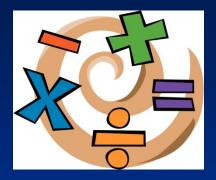
California Cr-6 Occurrence*


- Detectable Cr-6 (1 ppb) found throughout state
- Statewide about 60% of drinking water sources tested for Cr-6
- Cr-6 accounts for over 98% of total Cr in tested groundwater sources (Seidel et al, 2013)
- State estimates 311 water system sources have Cr-6 >10 ppb, 67 above 20 ppb

*<u>C</u>DPH, PIC<u>ME d</u>atabase

Coachella Valley Chromium-6 Occurrence*

- Found Naturally in Coachella Valley Groundwater
 - Erosion of ultra-mafic sediments found near faults
- Levels from <1 to 21 ppb
- Over 50% of CVWD delivered water exceeds draft 10 ppb limit
- Chromium-6 levels below detection in Colorado River water used for aquifer replenishment



*U.S. Geological Survey Studies and local water agency routine monitoring

Health Effects

Chromium Biochemistry*

- Cr-3 is essential
 - Needed for metabolic functions
 - Food/supplements
 - 50-200 micrograms/day
- Cr-6 is less stable and more reactive
- Cr-6 readily reduced to Cr-3
 - Ideal conditions in stomach
 - ✓ Low pH
 - ✓ Organic matter
 - ✓ Vitamin C
- Cr-3 does not oxidize back to Cr-6 once in plants and animals

- One microgram per liter = one part per billion (ppb)
- One ppb = one drop in 10,000 gallons (small swimming pool)

*EPA Scientific Workshop, Factors affecting reduction of hexavalent chromium in the GI tract (Sept, 2013), and Cr VI Public Health Goal Report, California Office of Health Hazard Assessment (2011)

Chromium (Cr) Health Effects*

- Cr-3/Cr-6 non-cancerous effects at high doses
- Cr-6 studied extensively
- Inhaling Cr-6
 - Occupational exposure
 - Lung and oral cavity cancer
 - Observed in humans and animals
- Ingesting Cr-6
 - California assessment
 - Clear evidence of carcinogenicity in animals
 - ✓ Possible human carcinogen
 - No human studies suitable for calculating drinking water Public Health Goal (PHG)
 - National Toxicology Program rodent study most suitable for setting PHG
 - U.S. EPA evaluating recent studies

*Cr VI Public Health Goal Report, California Office of Health Hazard Assessment (2011)

"Given these observations and until more human and/or animal studies become available that clearly indicate otherwise, it is prudent to consider this hazard in the development of a PHG for Cr VI."

(California Office of Environmental Health Hazard Assessment, 2011)

National (NTP) Rodent Study* Results

Organ	Tumor Type	Cr6 Drinking Water Exposure				
		Control	5,000 ppb	10,000 ppb	30,000 ppb	90,000 ppb
Male Mice Small Intestine	Adenoma (Benign Tumor)	1/49	1/49	1/49	5/50	17/48
	Carcinoma (Malignant Tumor)	0/49	2/49	1/49	3/50	5/48
	Adenoma or Carcinoma	1/49	3/49	2/49	7/50	20/48

Yellow-highlighted values are statistically significant (Fisher's exact test)

*National Toxicology Program study summary, table 5 (pg. 51), Cr VI Public Health Goal Report, California Office of Health Hazard Assessment (2011)

New Research

- American Chemistry Council MOA Work
 - 14 peer reviewed published papers
 - Shows threshold effect
 - High doses overwhelmed reduction in mice
 - Humans have more robust reduction
 - Cell damage only in highest doses
 - Repair process is key event for tumor formation
 - DWEL of 210 ppb is fully protective
- EPA postpones Risk Assessment to consider this research

Treatment

N.

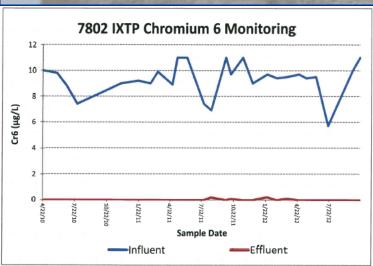
Cr-6 Pilot Treatment Technologies

- City of Glendale Research (about \$10 million)
- Three technologies identified
 - Reduction Coagulation
 Filtration (RCF)
 - Weak Base Anion (WBA) Exchange
 - Strong Base Anion (SBA)
 Exchange
- Pilot tested RCF and WBA technologies
- Developed cost models for both technologies

Glendale 100 gpm RCF

Glendale 425 gpm WBA

East Coachella Valley Water Treatment


- Arsenic Rule Compliance (about \$20 million for CVWD systems)
- Secondary goal of Cr-6 & Vanadium removal

- 3 Facilities (1,000-4,000 gpm)
- Operating data (6+ years)
- Includes brine treatment

Inside a Water Treatment Plant

000

WRF #4445 - Scope (\$355,000+)

- Impact of variable water quality
- Preliminary treatment strategy and monitoring plan
- Treatment testing
 - RCF (Bench)
 - WBA (Bench, Pilot)
 - SBA (Full-scale)
- Compliance costs for multiple MCL options
- Decision framework and systematic approach for other water utilities
- 2-year study

Parameter	CVWD wells
Cr(VI) (µg/L)	<1 – 21
Cr(T) (µg/L)	<10 - 24
Nitrate (mg/L-NO ₃ -)	< 2 - 40
Uranium (pCi/L)	< 1 – 12
Arsenic (µg/L)	ND – 16
рН	6.9 - 8.7
Sulfate (mg/L)	< 0.5 - 280
Orthophosphate (mg/L)	NA-0.04
Silicate (mg/L)	NA – 17
Total Iron (µg/L)	< 100 - 230
Alkalinity (mg/L)	68 – 164
TDS (mg/L)	130 – 1200

Water Research Foundation/CVWD Chromium-6 Removal Testing

and a second

Cont-

HIGH VOLTAGE HEEP OUT Section de la companya de la company

WRF #4516 - Scope (\$175,000)

Brine Management Optimization

- Brine Management = Largest SBA O&M cost
- Driven by liquid waste hauling
- Explore brine recycling for As/Cr6
- Alternative disposal options

Concept Pilot Test

- RCMF with chlorine
- Reduced reduction/ oxidation time compared to RCF with aeration
- Smaller treatment footprint = more viable for well-head treatment

CDPH Draft Cr 6 MCL Review

CDPH Cost Analysis* for Draft MCL (10 ppb)

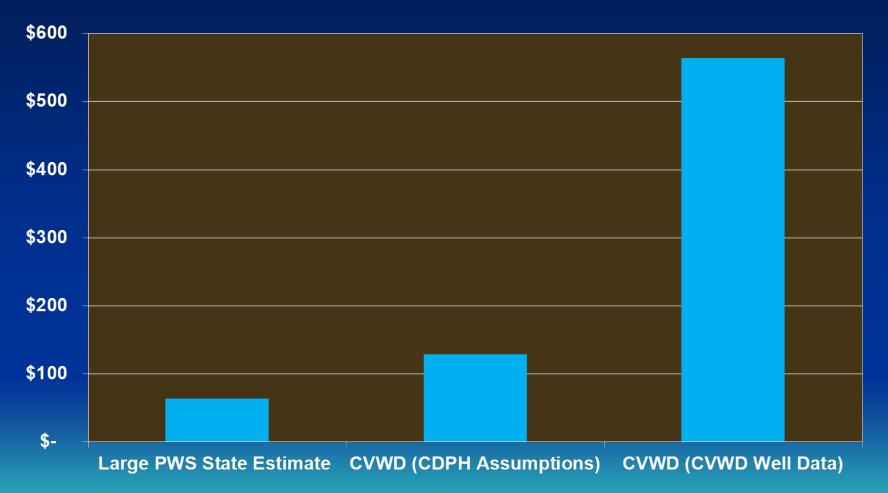
	Based on These Service Connection Groups				
	<200	200-999	1,000-9,999	>10,000	
Impacted Sources	65	13	81	152	
Impacted Systems	55	10	29	34	
Impacted Service Connections	2,453	4,418	113,550	1.6 M	
Total Annualized Cost	\$13.6 M	\$3.8 M	\$37 M	\$101.4 M	
Average Annual Cost Per Service Connection	\$5,627	\$857	\$326	\$64	

*Procedure for Cost-Benefit Analysis of Hexavalent Chromium (CDPH, 2013)

Problems with CDPH Cost Estimate*

 Occurrence Used existing State Cr-6 data Limited by 2001-2002 test approach Did not use surrogate total Cr data 	Key Cost Driver	CDPH Assump- tions	CVWD Well Data
 Did not account for variability Water Supply Conditions 	Wells Impacted	27	57
 Estimated well sizes Did not use regional office data Estimated well use Did not use data in annual reports 	Well Design Capacity (gpm)	325	1,903
 Treatment technology Feasible Used results of City of Glendale studies 	Well Use Rate	67%	33%
 Did not adjust costs for residential well sites (land and buildings) 	Land & Buildings	No	Yes

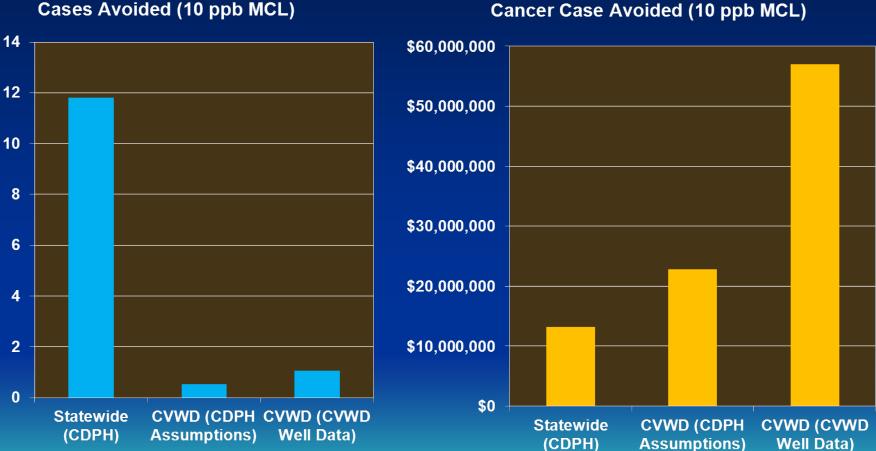
*Procedure for Cost-Benefit Analysis of Hexavalent Chromium (CDPH, 2013)


Statewide Impact of Draft MCL (10 ppb)

	CDPH Estimate	ACWA, AWWA, AWWA (CA/NV), CWA Consultants ⁽¹⁾ Estimate
Wells Impacted	311	1,360
Capital Cost	\$871 million	\$4.1 billion*
Annualized Cost	\$156 million	\$616 million*

* After excluding PWS's with mixed surface water and groundwater sources there were 1,027 impacted groundwater sources used for these cost estimates.

⁽¹⁾ Jacobs Engineering Group (2013) and Water Quality and Treatment Solutions, Inc. (2013) Technical Review of Occurrence and Economic Analyses for California Draft Chromium-6 Drinking Water MCL


Estimated Annual Compliance Cost Per Customer*

*CDPH Initial Statement of Reasons (Table 8) and Procedures for Cost-Benefit Analysis of Hexavalent Chromium (CDPH, 2013)

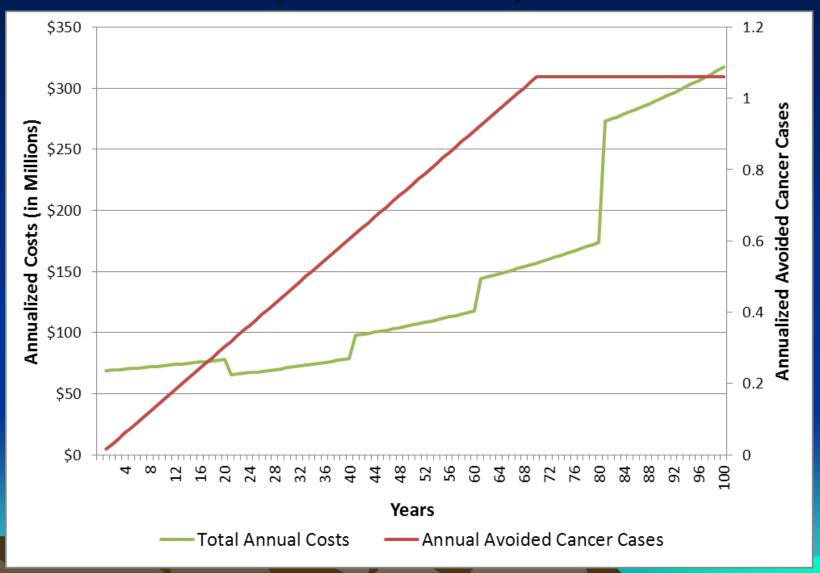
Cost Benefit Analysis*

Estimated Theoretical Annual Cancer

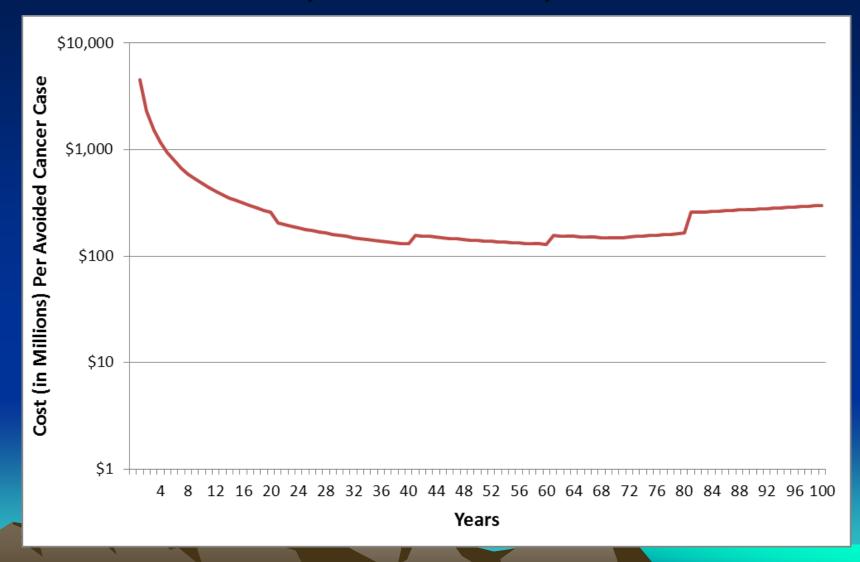
Estimated Cost Per Theoretical Annual Cancer Case Avoided (10 ppb MCL)

*Data for CVWD public water systems is based on calculations found in Procedure for Cost-Benefit Analysis of Hexavalent Chromium (CDPH, 2013)

More Errors in CDPH Cost Benefit Analysis


Risk is based on 70-year exposure

 Full benefits do not occur until year 70
 First year benefit is 1/70th of full benefit


Benefits and Cost must use same horizon

Annualized costs used a single 20-year life cycle (capital replacement costs not included)
Benefits accrued indefinitely

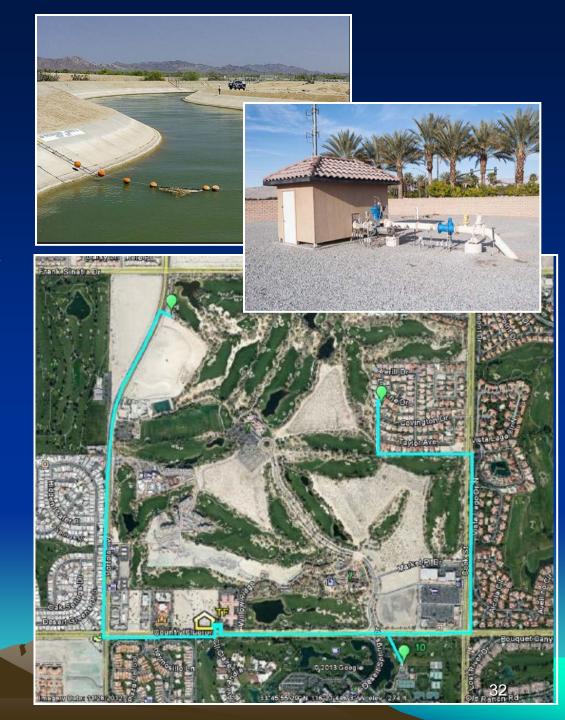
Draft MCL Cost Benefit Comparison (CVWD PWSs)

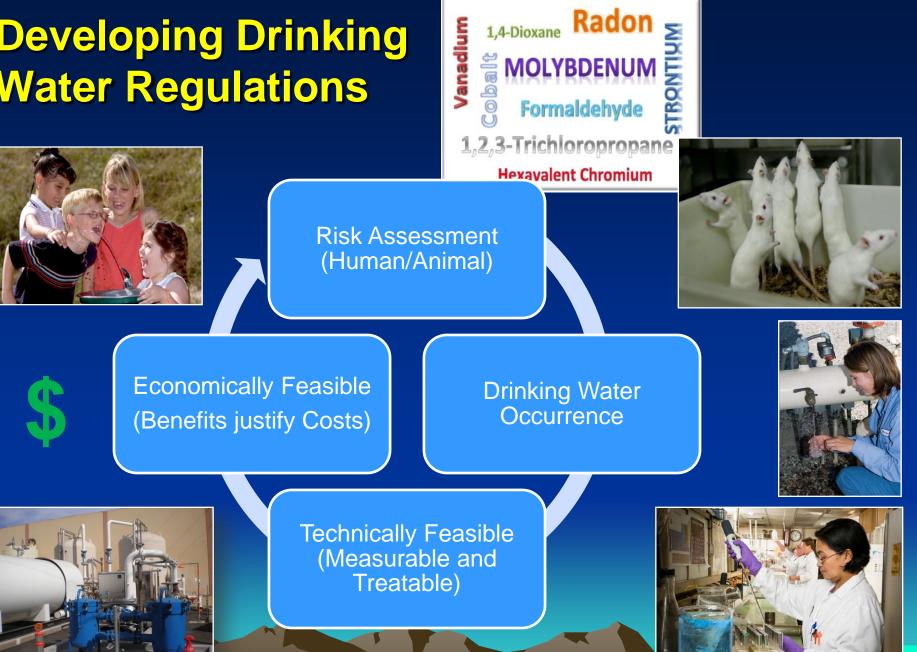
Draft MCL Cost-Effectiveness (CVWD PWSs)

Next Steps

• EPA

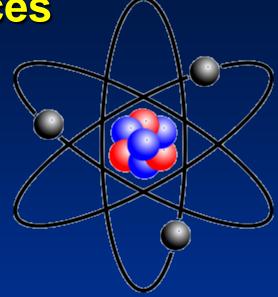
- Complete Cr-6 risk assessment
 - Will new rodent work make a difference?
- California
 - Reviewing 7,000+ comments
 - Respond to court
 - CDPH v. NRDC, EWG October 31 hearing
 - Prepare response to comments
 - Release revised regulatory package for comment???
 - Adopt final rule, new limit becomes effective
- Water Agency
 - Amicus letter
 - Compliance Planning/ Public Outreach
 - Hope for a revised draft MCL


Coachella Valley Water District Contact: Steve Bigley Director of Environmental Services (760) 398-2651 sbigley@cvwd.org



CVWD Compliance Planning

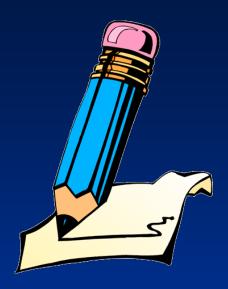
- Complete treatment research (2014)
- Source of Supply Study
 - Evaluate Colorado River water & groundwater supplies
 - Multiple treatment technologies
 - Many consolidation options
- Evaluate funding options
- More public outreach
- Develop & implement compliance plan

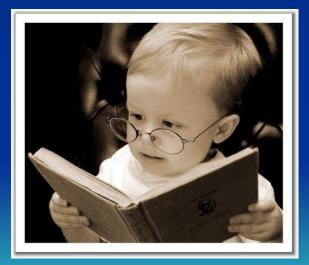


Developing Drinking Water Regulations

Chromium (Cr) Sources

- 21st most abundant element
- Chromic oxide 9th most abundant compound in earth's crust
- Occurs primarily as Chromium-3 (Cr-3) or Chromium-6 (Cr-6) in water
 - Cr-6 is more soluble in water
- Sources in Water
 - Coachella Valley erosion of natural ultra-mafic sediments
 - Statewide primarily natural, some isolated industrial sources





$Cr-3 + Cr-6 = Total Cr in H_2O$

Outline

- Chromium characteristics
- Regulatory process
- Occurrence
- Health effects
- Treatment
- Costs
- Next Steps
- Discussion Period

