Optimization of conjunctive water supply and reuse systems with distributed treatment for high-growth water-scarce regions

NSF EFRI – RESIN

\$2M grant over 4 years

Emerging Frontiers of Research and Innovation

Resilient and Sustainable Infrastructures

Participants

Kevin Lansey (CE)
Robert Arnold (Environ. Eng.)
Guzin Bayraksan (Systems Eng.)
Christopher Choi (Ag and Bio. Eng.)
Christopher Scott (Udall Public Policy)
Steve Davis (Malcolm Pirnie)
Doosun Kang (CE Post-Doc) Majed Akhter Alex Andrade **Ronson Chee** Kerri Jean Ormerod **Pierre Peguy** Pedro Romero Anne Stewart **Gwen Woods** Weini Zhang Several undergraduate students and MP staff Brian Keller (graduated)

Partners

Pima County Department of Wastewater Management

The Problem

Historic and projected water demand in the Tucson Active Management Area (using data from City of Tucson (2004)) Is water reclamation the next bucket? NAE grand challenge: "Combined neighborhood" of urban water and wastewater systems

Decentralized/satellite treatment -Where and how to treat?

Dual distribution systems -How to distribute and for what uses?

Utility Goals

Reliably satisfy water demand and water quality needs Triple bottom line objectives Construction and operational costs GHG and impact of releases to environment Institutional/regulatory compliance and social acceptance All under an uncertain future

Project Goals

Optimize real and randomly generated systems to analyze the effects of:

- institutional, legal and social constraints and
- topology and spatial land development patterns

on the optimal layout and design of integrated water supply/wastewater treatment services and assess

- the resiliency and sustainability of the system to withstand supply, energy and mechanical disruptions and
- the system objectives in terms of dollars, energy, and GHG production

Decision Support System (DSS)

- Malcolm Pirnie, Inc. under WateReuse Foundation project
- Can compares regional and satellite treatment
- Costs

tools

- wastewater treatment
- distribution +/or recharge of reclaimed water
- Other criteria (e.g., reliability, environmental factors) in a weighted decision matrix
 Will be linked with education and optimization

HAMP Reclamation Scenarios

HAMP Scenarios: Results

Scenario	Potable System Cost	Wastewater/ Reclaimed System Cost	Total Cost (20 year present worth)		
No reclamation	\$840 million	\$180 million	\$1020 million		
Regional reclamation	\$590 million	\$230 million	\$820 million		
Satellite reclamation	\$590 million	\$205 million	\$795 million		

- If groundwater recharge is valued at \$1000/ acre ft, the recharge option is worth \$4.7 million annually.
- Assumptions :
 - New supply line from WTP (versus expansion of existing lines)
 - Neglect expansion of WW collection system
 - Neglect expansion of reclaimed water pipeline

Dual distribution systems

What flow to provide through each system?

Optimal cost comparison (minimize costs: pump/pipes/O&M)

Water use	Scen	Scenario 1		Scenario 2		Scenario 3		Scenario 4	
	P*	NP**	Р	NP	Р	NP	Р	NP	
Drinking									
Toilet									
Outdoor									
Fire									
Individual System Cost (\$)	2,507,245	-	1,752,069	1,175,731	1,650,095	1,438,153	930,774	1,970,812	
Total Cost (\$)	2,507,245		2,927,799 (↑ 16.8%)		3,088,246 (↑ 23.2%)		2,901,584 (↑ 15.7%)		

Historical and Projected Demand & Supply

Historical and Projected GW budgets

Sustainability Measures (using GW budgets)

- **1. Reliability (1 failure frequency): R1** No. of satisfactory values / Total no. of simulation periods
- 2. Resiliency (failure duration): R2 1 / Average duration of unsatisfactory events
- 3. Vulnerability (magnitude of failure): R3
 - 1 (Sum of individual unsatisfactory values / Max. among all alternatives)
- 4. Restorability (magnitude of success): R4 Sum of individual satisfactory values / Max. among all alternatives

Sustainability Index (weighted average of R1~R4) W1*R1 + W2*R2 + W3*R3 + W4*R4, where W1+W2+W3+W4=1

Note) All measures range [0, 1] Zero(0) for least sustainable and One(1) for most sustainable condition

Sustainability Measures (Illustrative example)

R1(reliability)= 5 / 10= 0.5R2(resiliency)= 1 / ((2+1+2)/3)= 0.6R3(vulnerability)= 1 - (20/25)= 0.2 (*20=5+3+4+6+2, Alter2=25, Alter3=15)R4(restorability)= 16/23= 0.7 (*16=2+6+2+4+2, Alter2=14, Alter3=23)Sustainability= (R1+R2+R3+R4)/4 = 0.5

Scenario Analysis of the TAMA GW budgets

20% decrease in natural recharge and CAP delivery

The University of Arizona.

Sustainability Measures

	Reliability (R1)	Resiliency (R2)	Vulnerability (R3)	Restorab- ility (R4)	Sustain- ability
Base Condition	0.39	0.16	0.53	0.43	0.38
Scenario 1	0.20	0.15	0.00	0.13	0.12 (↓0.26)
Scenario 2	0.73	0.45	0.85	1.00	0.76 (↑0.38)
Scenario 3	0.54	0.32	0.70	0.67	0.55 (↑0.17)
Scenario 4	0.32	0.21	0.13	0.36	0.26 (↓0.12)

Design Uncertainties

Scale: Temporal→ Spatial ↓	Operational (months to several years)	Strategic (10 – 100 years)
Conventional system (independent supply, reuse)	Mechanical performanceSupply disruptions	 Capacity exceedance Excess/wasted reclaimed water
Conjunctive system (with decentralized treatment)	 Conjunctive operations Financing issues Regulatory compliance (water quality, CO₂ emissions caps) 	 Technical obsolescence Community growth Water resource variability Public perceptions of reuse and decentralized treatment
Water resources system	 Proportions from multiple sources (groundwater, imported, reclaimed) Quality blend issues 	Climate changeDrought

Uncertainties affecting conjunctive system sustainability and resilience

Tucson general survey -acceptable urban uses

🗖 oppose

Outdoor uses

fire hydrants* cemetery/golf courses* household lawns* public parks/schools* groundwater recharge*

Indoor uses

unsure 🛛

support

*Approved uses for reclaimed water per Arizona Administrative Code

Existing residential reclaimed water users' acceptance of potential reclaimed water uses

Reclaimed Water User Study (General)	% Agree/ strongly agree	% Disagree/ strongly disagree	% Unsure
groundwater replenishment	75/(48)	11/(29)	14/(22)
swamp coolers	51/(48)	28/(30)	21/(22)
laundry	35/(41)	45/(32)	21/(27)
toilet	84/(79)	14/(13)	3/(8)
swimming	32/ (*)	50/ (*)	22/ (*)
car washing	78/ (*)	15/ (*)	7/ (*)
cooking	14/(10)	68/(65)	19/(25)
drinking	11/(8)	70/(66)	18/(26)

Values in parens are from the Tucson general survey

Tucson general survey -acceptable urban uses

Who do you trust to provide accurate information about reclaimed water?

	■ di	strust	neutral	■ trust
***researchers	8% 18%		74%	
***water utilities	16%	29%	5	5%
***ww treatment facilities	17%	37%		46%
***federal regulators	27%	28%		46%
***state regulators	25%	30%		45%
**independent consultants	23%	45%		32%
*local officials	40%		41%	19%
national media	41%		42%	17%
local media	39%		41%	21%
environmental orgs	21%	29%		50%
citizen groups	22%	46%		33%
friends/family	19%	49%		32%

Dependent variable : Would you be willing to drink reclaimed water if it was treated to a water quality level that matched or exceeded your current tap water quality?

* $p \le .05$ ** $p \le .01$ *** $p \le .001$

Aspects of project that will enable potentially transformative results

- Demonstrate Water and Wastewater utility collaborations
- Integration of triple bottom line objectives in particular social/institutional
- Education of water needs and policy impact facilitated public involvement in water/wastewater decisions
- Combining regional water supply planning with detailed distribution system design

Economic cost breakdown

Scenario3

44%

28%

19%

Water Demand/Supply Projections for the Phoenix AMA

Year

Project Responsibilities

- Monthly full team meetings
- Bi-weekly/weekly sub-group meetings
- Regular partner interactions
- Annual partner summary meetings
- Eight grad students; plans for 2 more with undergraduates

EFRI-RESIN: Optimization of conjunctive water supply and reuse systems with distributed treatment for high-growth water-scarce regions

Approach

Rationale

- Water scarcity 36 states within 5 years
- Key infrastructures:
 - (i) Water supply
 - (ii) Wastewater treatme
- NAE grand challenge: "C of urban water and waster
- Cost, environment, publi
- Resilience & sustainabili
 Short term mechanical
 Long term growth, clim

Impa

- Paradigm shift to resilien
- Optimal design & operati Bottom Line (\$\$, environ
- Decentralized treatment reduces energy & operations costs, increases water reuse
- Non-engineering roadblocks to reuse addressed
- Applications (real + generic) lead to new insights

Wateruse	Scenario 1		Scenario 2		Scenario 3		Scenario 4		Scenario 5	
	P×	NP**	Р	NP	Р	NP	Р	NP	Р	NP
Drinking										
Toilet										
Outdoor										
Fire										
Individual System Cost (\$)	2,507,245	_	1, 192, 089	الت جرب	1,850,025	1,420,150	320, rn.	1,970,812	1,210,115	1,819,249
Total Cost (\$)	2,507	7,245	2,92 (†16	7,799	3,088 († 23	3,246	2,901 (†15	,584	2,883 (†15	357

Results - Cost Comparisons

(Bavraksan/Lansey)

inary Team

g & Engr. Mechanics

THE UNIVERSITY OF ARIZONA.

- Bayraksan Systems & Industrial Engineering
- Choi Agricultural & Biosystems Engineering

Integrated System Optimization

(deterministic & stochastic)

- Scott Public Policy; Geography & Reg. Devel.
- Davis Malcolm Pirnie Consulting Engineers