Controlling Drinking Water Chromium-6 and Other Emerging Constituents

Western Coalition of Arid States (WESTCAS) Fall Conference – Tucson, AZ

> Presented by: Steve Bigley Coachella Valley Water District October 29, 2015

Emerging Drinking Water Constituents

Federal Update

Unregulated Contaminant Monitoring Rule (UCMR3)

- 30 contaminants VOCs, metals, fire retardants, hormones or DBPs
 - List 1:21 VOCs, metals, fire retardants, DBPs
 - List 2:7 hormones
 - List 3:2 microbials
- Complete testing by 12/31/15
- Top Hits (PWS's with results >reference concentration)
 - I,2,3-TCP (I.3%)
 - Vanadium (3.3%)
 - Strontium (5.6%)
 - I,4-Dioxane (6.7%)
 - Chlorate (36%)
 - Chromium-6 (88%)¹

¹ – No federal reference concentration exists for Chromium-6; used California Public Health Goal (0.02 ppb) instead.

Regulatory Determination 3 (RD3)

- Contaminant Candidate List 3 (116 contaminants)
- Preliminary determination (5 contaminants)
- Chlorate and nitrosamines – assessment ongoing
- EPA plans to issue final determination in December 2015

Constituent	Preliminary Determination
1,3-Dinitrobenzene	No regulation
Dimethoate	No regulation
Terbufos	No regulation
Terbufos sulfone	No regulation
Strontium	Regulate

Strontium

- Another natural element in groundwater
- Also in Colorado River
- Replaces calcium during bone development
- Health reference level = 1,500 ppb
- Treatment:
 - High-pH precipitation (lime softening)
 - Ion exchange (Strong Acid Cationic Resin)
 - Membrane (NF or RO)
- EPA regulatory timeline
 - Dec 2015: final determination to regulate
 - Jan 2018: draft regulation
 - June 2019: final regulation

Cyanobacterial Toxins

- Blooms in surface water
- Impacts plant operations
- Taste/odor problems
- Toxin (targets organs)
- EPA Health Advisories
- Long viability in sludge (higher toxin release)
- Supernatant return can pose increased risk

	10-Day Health Advisory	
Constituent	Bottle-fed Infants and Pre- school Children	School- age Children and Adults
Microcystins	0.3 ug/L	1.6 ug/L
Cylindro- spermopsin	0.7 ug/L	3 ug/L

Lead and Copper Rule - Long-Term Revision (LCR LTR)

NDWAC Report (Aug 2015)

- Lead Service Line replacement & public education
- Stronger Corrosion Control Treatment (CCT)
- Allow consumer requested tap samples
- Tailor Water Quality Parameters
 for CCT plans
- Household "action levels" trigger follow-up
- Separate requirements where copper is problematic

"Emerged" Drinking Water Regulation

Chromium-6 (Only in California)

Chromium (Cr) Background

- Chromic oxide 9th most abundant compound in earth's crust
- Chromium-3 (Cr3) or chromium-6 (Cr6) in water
 - Mostly Cr6 in groundwater
 - Need Cr3 to produce insulin
- Cr6 Sources in Water
 - Erosion of natural sediments
 - Isolated industrial sources
- Cr6 Health Concerns
 - Carcinogen when inhaled at work
 - Listed as possible carcinogen when ingested (rodent studies)

Coachella Valley Cr6 Occurrence

- Natural in groundwater
 - Ultra-mafic sediments
- Levels from <1 to 22 parts per billion (ppb)
- Above 10 ppb in about 100 domestic wells valley-wide
- 30 of CVWD's 100 wells (150 square mile service area)
- Cr6 below reportable levels in Colorado River water used for aquifer replenishment

Early "Cr6 Treatment" Work

Cr6 Reduction

- Proved reduction of Cr6 to Cr3 was possible
- More cost effective than removing Cr
- Critical limiting factor
 - Drinking water is chlorinated to meet bacteria standards
 - Chlorine oxidizes Cr3 to Cr6
 - Can provide residual Cl₂ or reduced Cr, not both

CHROMIUM REMOVAL BEST AVAILABLE TECHNOLOGIES (BAT)

Weak-Base Anion Exchange (WBA)

Strong-Base Anion Exchange with Residuals Treatment (SBA)

Reduction Coagulation Filtration (RCF or RCMF)

Reverse Osmosis (RO)

CVWD's Cr6 Treatment Work

- 2001 Cr6 added to pilot Arsenic removal tests
- 2006 Two Ion Exchange treatment plants begin removing Arsenic and Cr6 (\$13 million)
- 2011 Collaborative Water Research Foundation Cr6 pilot study (IX & RCF)
- 2012 CVWD absorption media pilot test for Cr6
- 2013 Second Cr6 Water Research Foundation study (RCMF & Brine)
- 2013 Begin Source Study (draft MCL)
- 2014 Multiple ion-exchange and brine pilot test programs (Hazen)
- 2015 Follow-up pilot tests to finalize Facilities Basis of Design

Cr6 Removal By Ion Exchange

Water

Ion Exchange

lons of Cr6 attach to specially coated resin beads

Cr6 in water

+

Chloride on resin

Resin bead

SBA Treatment Facilities

- Planned for 23 impacted wells
- Uses compact SBA design for small well sites
- No pipelines required
- No well-site regeneration or brine management
- Depends on 40 acre Central Resin
 Regeneration Facility (CRRF)

Typical Well SBA System Layout

Central Resin Regeneration Facility (CRRF)

SBA Resin Transfer/Regeneration Summary

Waste Management Process

- Most costly, complex and unreliable element of compliance
- Waste minimization is key
- Not just chromium
- Not within Division of Drinking Water's Authority
- Important to have redundancy and control
- Advanced treatment technologies may help

Chemical Coagulation

Electrocoagulation

WBA Treatment Facilities

- Planned for 6 impacted wells
- Two WBA facilities each treating multiple wells
- Land required for large plants
- I0 miles of pipelines

BAT Installation Timeline

Regulation Timeline

- Effective July 1,2014
- Initial compliance monitoring on or before January 1, 2015
 - Compliance based on annual average level of quarterly samples
- State failed to provide a compliance period consistent with Federal Safe Drinking Water Act requirements

Compliance Challenge

- Maintain compliance with drinking water laws

 Years to build CVWD's most costly project ever
- Non-compliance increases ratepayer impact
- Already using accelerated effort to install BAT
- Initiated two unlikely options to avoid violation:
 - Obtain urgent California legislation
 - Find an additional control measure

Legislation

- 2014 Appropriations Trailer Bill developed from discussions with Governor's staff
 - RIP August 2014
- SB 385 (Hueso)
 - ACWA Sponsored; significant stakeholder input
 - Supported unanimously by legislators
 - Signed by Governor Brown 9/4/15
 - Provides California water agencies path to maintain compliance while installing BAT by earliest feasible date
 - Sunsets January 1, 2020

Additional Control Measure

- Must achieve "no unreasonable risk"
- Install Point Of Use Treatment too costly and not quick enough
 - Exceeds BAT cost
- Provide bottled water quick but too costly
 - \$1.60 gallon delivered
 - \$0.84/person/day = \$92 million/year
- What about Cr6 reduction at the tap?

Ascorbic Acid (Vitamin C)

- Antioxidant (strong reducing agent)
 - Excellent electron donor
 - Used to de-chlorinate water
 - Observed to reduce Cr6 (Xu et al., 2004)
- Ingestion is Essential
 - Added to infant formula
 - RDA = 60 milligrams (mg)/day (prevents scurvy)
 - 500 to 1,000 mg/day doses are common
- Easy to dispense, quick to implement

Cr6 Reduction by Vitamin C

Demonstration Results

- Challenge water
 - Elevated Cr6, pH & salinity
 - Spiked Cr6
 - Spiked Chlorine
- Vitamin C dose
 - Calcium vs sodium buffer
 - Multiple doses
 - Higher dose = faster reaction
 - -Lower dose = lower cost
 - "Pinch" per gallon provides good balance
 - 220 mg Vitamin C
 - 30 mg Calcium

Cr6 Reduction in Impacted Wells

→ 4722 St → 6724 St → 5664 St → 4720 St → 5711 St → 3405 St → 5720 St → 6734 St → 5657 St → 5718 St → 4610 St → 5676 St → 5677 St → 5717 St → 6723 St → 6701 St → 5678 St → 5719 St → 5632 St → 6805 St

Utah State University - Process Verification Performed by Dr. Laurie McNeill and Nate Rogers

- Used CVWD treatment kit
- Water tested from 3 representative wells
- Duplicate testing by CA certified lab
- Results:
 - Cr6 levels below 10 ppb
 within 15 minutes of
 Vitamin C addition
 - Cr6 levels dropped below
 0.3 ppb within 24 hours
 - Total Cr remained stable (Cr6 reduced to Cr3)
 - No re-oxidation of Cr6 observed

Questions?

Steve Bigley Director of Environmental Services Coachella Valley Water District 760-398-2661, ext. 2286 sbigley@cvwd.org

Carcinogenic VOC's

- 2011 EPA decision to group cVOC's
 - May co-occur
 - Same treatment
 - Same analytical method
- 16 cVOC's
 - 8 Regulated benzene; carbon tetrachloride; 1,2-dichloroethane; 1,2-dichloropropane; dichloromethane; tetrachloroethylene; trichloroethylene and vinyl chloride
 - 8 Unregulated aniline; benzyl chloride; 1,3-butadiene; 1,1dichloroethane; nitrobenzene; oxirane methyl; 1,2,3trichloropropane and urethane
- EPA expected to release "regulatory process" in late 2014

Strong Base Anion Exchange (SBA)

SBA Pilot Tests

- No pH adjustment needed
- Elevated sulfate limits bed volumes (run times)
- Longer than expected run times when sulfate levels are low
- Good recovery following regeneration with both fresh and recycled brine (Run 5)

Weak Base Anion Exchange (WBA) Process

WBA Pilot Tests

- pH control is essential (pH 6 target)
- Achieved very high bed volumes
- Estimate I-2 year runtime between change-outs
- Less impacted by sulfate levels
- Spent resin is hazardous waste and considered radioactive material (naturally occurring uranium)

