USE OF MICROALGAE FOR WASTEWATER TREATMENT AND PRODUCTION OF RENEWABLE BIOFUELS

Kent BioEnergy Corporation WESTCAS 2010 – San Diego, CA, June 18, 2010 Dr. James C. Levin, Director of Molecular Studies

CONTROLLED EUTROPHICATION PROCESS (CEP) FOR TREATING AQUACULTURE DRAIN WATER

INITIAL RESEARCH SUPPORTED BY SEA GRANT

Southwest Fisheries Science Center-

Sea Grant

U.S. Department of Commerce National Oceanic & Atmospheric Administration National Marine Fisheries Service

SCRIPPSOCEANOGRAPHY

KENT BIOENERGY HAS RECEIVED NEARLY \$7.0 MILLION IN GOVERNMENT & PRIVATE SUPPORT FOR ALGAE RESEARCH

Agency	Research Topic	Award
US Dept of Commerce ATP	Techniques for Recycling of Aquaculture Effluents	\$2,000,000
US Dept of Agriculture	Treatment and Reuse of Aquaculture Effluents	\$350,000
State of California (SSA)	Reducing Eutrophic Conditions in the Salton Sea	\$1,000,000
ЕРА	Management of CAFO Discharges	\$50,000
US Dept of Energy	Utilizing Microalgae for Carbon Sequestration and Greenhouse Gas Abatement	\$750,000
National Science Foundation	Microalgae Production, Harvest and Oil Extraction	\$150,000
Corporate Client	Treatment of Landfill Effluents	\$2,600,000

TIMELINE OF DEVELOPMENT OF KENT BIOENERGY ALGAE TECHNOLOGY

KENT BIOENERGY 160 ACRE MICROALGAE RESEARCH FACILITY LOCATED IN THE COACHELLA VALLEY

ALGAL HARVESTING AND DEWATERING SYSTEMS

CONTROL OF EXCESS NUTIRENTS ENTERING THE SALTON SEA (Efforts to sustain fish and bird populations)

THE PROBLEM:

Terminal lake

- Salinity
- Eutrophication

High tributary flow rate (600,000 gpm) Low nutrient concentrations (N & P) Phosphorus is the limiting nutrient

Use of CEP to reduce eutrophication

KBE LARGE-SCALE MICROALGAE CONTROLLED EUTROPHICATION PROCESS (CEP)

SALTON SEA BIOLOGICAL REMEDIATION PROGRAM 2002 – 2009 FOUR STAGE PROCESS OF CEP

The Problem: Excess Nutrients

High levels of nutrients enter the Salton Sea through the New River, the Alamo River, and the Whitewater River. The nutrients cause large plankton blooms, which under certain conditions can die and decay, causing widespread problems for the fish and bird populations.

Reducing the inflow of nutrients to the Sea, especially phosphorus, should result in more stable populations of plankton, which will greatly enhance the Salton Sea ecosystem. By-products from the CEP treatment process will include valuable fish and fertilizer concentrates.

The Solution: Controlled Eutrophication

KENT BIOENERGY FIELD DATA ALLOWS US TO OPTIMIZE CEP OPERATING PARAMETERS FOR MAXIMAL PRODUCTIVITY, NUTRIENT UPTAKE, AND CARBON CAPTURE

Seasonal Productivity Algal Production 16.0 🗖 Ag Drainage 14.0 14.0 13.0 12.0 10.0 ច្ឆ័ 10.0 9 8.0 6.0 6.0 gal 4.0 2.0 0.0 Spring Summer Fall Winte

Algal Harvest

Lipid Maximization

Lipid Content

©2010 CONFIDENTIAL

SELENIUM REDUCTION OF SALTON SEA AG DRAINAGE

CEP 40% Se reduction with 4 – 6 Day Retention

WETLANDS 54% (Imperial) and 69% (Brawley) Se reduction with 9 – 18 Day Retention

SPECIES CONSERVATION HABITAT (SHC) SITES AT THE MOUTH OF THE ALAMO & NEW RIVERS IN THE IMPERIAL VALLEY

EARLY START HABITAT - USGS ALAMO RIVER IN THE IMPERIAL VALLEY

CONSTRUCTED WETLANDS – TMR WHITEWATER RIVER IN THE COACHELLA VALLEY

Courtesy TMR

ALGAE INPUTS (Requirements) AND OUTPUTS (Products)

ALGAL LIPIDS

MICROALGAE ARE MICROSCOPIC AQUATIC PLANTS THAT USE SUNLIGHT AND CO₂ TO CREATE BIOMASS

©2010 CONFIDENTIAL

A VARIETY OF PROCESS OPTIONS HAVE BEEN PROPOSED FOR THE PRODUCTION OF ALGAE-BASED BIOFUELS

Kent BioEnergy Process

Step 1	Strain Selection	Allow Wild Species to Dominate	Select Strains Optimal for Local Conditions	Manipulate Environment to Minimize Competitors	Use Biological Controls to Minimize Competitors	Use Genetically Modified Algae Strains (GMO)
						2
Step 2	Algae Culture	Managed Natural Water Bodies and Static Ponds	High Rate Open Ponds	Hybrid System (High Rate Ponds + PBRs)	Photo- bioreactors (PBRs)	Light Diffusion and Fiberoptics Technology
Step 3	Algae Harvest	Mechanical Centrifuge or Filtration	Biologically Enhanced Settling	Biological Harvest & Conversion	Chemical Flocculation	Electrical Floatation (DAF)
X					ø	Ý
Step 4	Oil Extraction	Roller Press Crushing	Soxhlet Hexane Extraction	Cold Hexane Extraction	Supercritical Fluid Extraction (CO ₂)	High Pressure Pulsing / Sonication / Electroporation
19		9	Cost		©2010 CONFIL	

KENT BIOENERGY PROCESS FOR ENERGY AND CO-PRODUCT GENERATION IN CEP MICROALGAE SYSTEMS

KBE TECHNOLOGY HAS MARKET APPLICATIONS IN POLLUTION CONTROL AND BIOMASS PRODUCTION

Pollutio	n Control	Co-Products		
Agricultural Runoff		Biofuels		
Dairy Waste		Feed Additives		
Industrial Effluent		Fertilizers		
Digester Effluent		Electricity		
Greenhouse Gases	CO2	Chemicals & Biopolymers		

©2010 CONFIDENTIAL

CRITERIA FOR LOCATION OF FULL-SCALE COMMERCIAL SITES

Temperature

Rainfall

Cloud Cover

Optimal U.S. Locations

🔀 - existing KBE site

ALGAE CULTURE ACTIVITIES IN THE IMPERIAL AND COACHELLA VALLEYS

Earthrise

Kent BioEnergy

Carbon Capture

SunEco Energy

©2010 CONFIDENTIAL

CONCLUSIONS

- ALGAE CULTURE DOES NOT COMPETE WITH FOOD PRODUCTION
- NON-ARABLE LAND LOCATED IN ARID CLIMATES
- EXPOSED PLAYAS AND REDUCE FINE DUST IRRITANTS
- NON-POTABLE WATER (WASTEWATER, BRACKISH, SALINE)
- USE OF WASTE NUTRIENTS (ORGANIC) AGRICULTURAL & MUNICIPAL
- REMOVES POLLUTANTS AND RESTORES VALUABLE HABITAT
- RECYCLES CARBON DIOXIDE & MITIGATES GHG EMMISSIONS
- PRODUCES MANY VALUABLE PRODUCTS, INCLUDING BIOFUELS
- PROVIDES NEEDED JOBS IN THE VALLEY
- STIMULATES LOCAL COMMERCE
- IS ELEGABLE FOR GOVERNMENT GRANTS
 - a) Water reclamation
 - b) Habitat restoration
 - c) Renewable energy

0

Kent BioEnergy Corporation 11125 Flintkote Avenue, San Diego, CA 92121 (858) 452-5765 www.kentbioenergy.com

ALGAE BIOMASS REQUIRE MUCH LESS AGRICULTURAL LAND THAN TERRESTRIAL CROPS

