#### WESTCAS 2010 FALL CONFERENCE



#### A New Paradigm for Sustainable Water Infrastructure: The EPRI/WERF Report



Claudio Ternieden, WERF Trevor Clements, Tt



complex world CLEAR SOLUTIONS"

### Background



Key WERF Efforts Related to New Water Paradigm

• The Baltimore Charter, 2007

 Smart, Clean & Green - 21<sup>st</sup> Century Sustainable Water Infrastructure, 2009

 Case Studies on a New Water Infrastructure Paradigm, 2009 Change is Difficult...the New Paradigm Needs Champions



# The key to accomplishment is believing that what you can do will make a difference.



### Infrastructure



- Basic physical and organizational structures needed for the operation of a community or the services and facilities needed for the community to function
- Water infrastructure = drinking water/supply, wastewater and stormwater/flood control



# Sustainability – What does it really mean?



- Bottom Line: Community development that meets the needs of the present without compromising the ability of future generations.
- Triple Bottom Line Measures:
  - Clean and healthy environment
  - Vibrant economy
  - Healthy and enjoyable **quality of living** in a just society

# Current Paradigm Issues



- Percent of US Waters impaired increasing
  - > 44 %
- Cost of maintaining/replacing existing aging water infrastructure increasing
  - User fees frequently not covering cost of water services
  - Gap > \$300 billion+ nationally (EPA 2010 estimate)
- Vulnerability to climate change/catastrophic events
- Water related energy use and carbon footprint is high





 Traditional linear approach: extract water, treat to potable standards, water typically used once, treated to high levels and then of disposed as wastewater





 Centralization has become the norm: wastewater is collected for a large area, conveyed to a central location often in a remote or an economically depressed area







 Stormwater treated as a nuisance: largely managed for flood control through rapid conveyance and discharge







- Piecemeal management of water supply, wastewater and stormwater ("silo" programs)
  - CWA NPDES Wastewater
  - CWA NPDES Stormwater
  - CWA 319 NPS
  - SDWA Drinking Water
  - Public Health



#### EPRI Project No 068143: Case Studies on a New Water Infrastructure Paradigm





- 3-day retreat to define new paradigm
- Two case study communities: east & west
- 24 experts from variety of disciplines & organizations

# Case Study: Tucson – Pima County AZ

- Population: 1,000,000 in Pima County 742,000 in City of Tucson
- 9,200 square miles
- Annual rainfall: 12 inches (metro area)









Photo by RWRD Staff

# Case Study: Northern Kentucky





- Cincinnati metro area
- 31 cities; 3 counties
- 27% growth over 18 yrs
- Challenged by extreme wet weather flows:
  - CSOs, SSOs, stormwater



# New Paradigm: Water Infrastructure is...



- Managed using a performance-based approach in a watershed context
  - More than green building
    - Apply community-based indicators and targets (e.g., pollutant loading)
  - Triple bottom line



#### New Paradigm: Integrated Resource Management



- Integrate water and land mgmt.
- Close the loop on resource cycles: water, nutrients, carbon/energy, etc.
- Augment water supplies
- Promote hydrologic and ecological restoration through land application
- Achieve multiple watershed benefits
- Generate revenue

Note: Requires agencies to rise above program silos to plan and evaluate together (including other infrastructure such as transportation and parks)



# New Paradigm Key Elements





# 1. Overarching Sustainability Goals



- Environmental
  - Neutral impact (hydrology, nutrients, carbon, etc.)
- Economic
  - Self-supporting (not subsidized)
  - Value of services exceeds monetary cost
  - Resilient
  - Clean Technology
- Social
  - Healthy and enjoyable living
  - Connectedness
  - Environmental justice



# 2. Sustainable Operating Principles



- Value the resource
- Aspire to higher objectives (that spawn better outcomes)
- Consider context at multiple scales
- Build intellectual capital
- Integrate water management
- Share responsibilities & risks
- Recognize true costs & maximize benefits
- Choose smart, clean & green
- Adapt & evolve





# 3. Technological Architectures

- Broader spectrum
  - Resource efficiency, recovery & recycling
  - Distributed
  - Mimic nature
  - Multi-benefit
  - Emerging
- Adapt and integrate
  - No single solution
  - Plan infrastructure systems together



# 4. Institutional Capacity



- Integrated Planning & Smart Growth
  - Multi-agency/program forums
  - Assessment tools linked to goals
    - Watershed models
    - Full life-cycle costing
- Enhanced Community Engagement
- Modified Regulations
- Intellectual Capital
- Market Mechanisms



# **5. Evaluation Protocol**



- Monitor outputs => indicators tied to goals
- Evaluate performance
- Diagnose problems
- Identify solutions
- Implement change



# How is this different from current practices?



| Торіс                      | Current Practice                                                | New Paradigm                                       |
|----------------------------|-----------------------------------------------------------------|----------------------------------------------------|
| Water Use                  | Single use before disposal                                      | Reclaim/reuse water multiple times                 |
| Water quality supplied     | Treat all water to potable standards                            | Level of water quality based on intended use       |
| Waste                      | Dispose of                                                      | Recover resources                                  |
| Stormwater                 | Convey offsite                                                  | Harvest onsite                                     |
| Infrastructure type        | Primarily gray, centralized                                     | Integrate gray and green thru distributed approach |
| Infrastructure integration | Drinking water,<br>stormwater, wastewater<br>managed separately | Integrate as appropriate                           |
| Public Involvement         | Stakeholders informed of pre-chosen solution                    | Stakeholders engaged in decision-making            |
| Cost-benefit analysis      | Focus on capital and recurring costs                            | Develop understanding of full cost and benefits    |





Illustration by Michael McCasland, Tucson Water

# Pima Co. – Technological Approaches/Architectures



#### Goals

- Reduce reliance on Colorado River diversion
- Increase integration between built and natural environments
- Opportunities
  - Link land use planning with system architecture
  - Integrate solar and co-generation with water & wastewater facilities
  - Install smart systems in homes and businesses
  - Public educational projects: integrate stormwater capture, wastewater reclamation, wetland restoration and natural resource amenities (e.g. Kina Environmental Restoration Project)

#### **Cooperative Initiatives – Ecosystem Restoration**

**Kino Environmental Restoration Project** 



# Pima Co. – Integrated Planning



#### Goals

- Develop tools and incentives for sustainable approaches
- Increase collaboration with diverse stakeholders
- Opportunities
  - Direct growth to suitable areas for technologies through land use and capital investment planning
  - Further develop use of reclaimed water, graywater and stormwater through land use planning
  - Develop new platform for planning across departments and community programs
    - Develop shared water efficiency strategies at sub-regional and neighborhood scales

# Pima Co. – Regulatory & Programmatic Change



### Goals

- Research and develop standards for arid conditions
- Adopt integrated, performance-based approach
- Support innovative, adaptive approach

### Opportunities

- Review current codes for impediments & implement model codes that support sustainable infrastructure
- Work with State agencies to overcome barriers to maximizing use of reclaimed water and dissuade use of groundwater when renewable sources are available
- Train regulatory staff in sustainable principles
- Develop faster verification measures for new technologies

# Pima Co. – Enhance Community Engagement



### Goals

- Include community members in infrastructure policy and planning decisions
- Increase community understanding of science and tools
- Opportunities
  - Upcoming regional visioning process; updates to County Comprehensive Plan and Tucson General Plan
  - Train community leaders to conduct round table dialogues within existing forums and organizations

# Conclusions



- Current practices not capable of achieving environmental, economic and social goals
- Sustainable communities operate under a new set of principles
  - Valuing water
  - Integrating planning, design and implementation across multiple institutions and programs
  - Performance-based
  - Recognizing true cost
  - Adaptive



# **Conclusions: Near-Term Opportunities**



- Coordinate water master planning to realize synergistic benefits
- Revise local codes to remove barriers to sustainable practices
- Build local demo projects to lead by example
- Use social marketing to increase support
- Use infrastructure grants/loans to jumpstart efforts
- Enhance training and certification to build intellectual capital

# **Conclusions: Long-Term Opportunities**



- Develop water performance standards to provide context
- Establish new ownership and maintenance models to address past shortfalls
- Develop funding and marketing mechanisms to leverage and expand capacity
- Work to adapt state and federal regulatory programs



### **Next Steps WERF & EPA**



New WERF Research Program:

"Next Generation Water"

#### EPA Strategy on Integration Under Development





### Want more details?



- Final Report Publication
  - Sustainable Water Resources Management, Volume 3: Case Studies on New Water Paradigm, EPRI, Palo Alto, CA and Tetra Tech: 2009, 1020587

#### Contact

- <u>trevor.clements@tetratech.com</u>
  (919) 485 8278 ext 100
- <u>cternieden@werf.org</u>

(571) 384-2099

Sustainable Water Resources Management, Volume 3: Case Studies on New Water Paradigm

